Stability of stepped sliding of bedding rock slopes with discontinuous joints
-
摘要: 阶梯状滑动顺层岩质滑坡在工程中较为常见,其岩桥和节理特性对阶梯状滑动面的形成至关重要。考虑岩桥和节理面之间强度参数弱化特性,构建阶梯状滑动顺层边坡稳定性分析模型。研究表明:与平面型滑动对比验证了分析模型的准确性。裂隙连通率kY、基本摩擦角φb、粗糙度系数JRC和弱化系数Kc对安全系数Fs影响显著。岩桥倾角β3越大,Fs减小越显著,边坡越不稳定。台阶法中开挖次数和坡角角度对边坡稳定性影响显著,通过算例分析验证了该方法与极限平衡解差异率在1%以内。某些情况下当开挖使节理面出露时,Fs显著降低(如β=53°时降低了22.8%),易诱发滑坡的发生。同时,随着拉裂缝倾角β1和充水高度hw的增大,Fs显著降低,出流缝被堵塞时水力效应更为显著,此时边坡最不稳定。Abstract: The bedding rock landslides with stepped sliding surface are common in engineering, and the characteristics of rock bridges and joints are very important to the formation of stepped sliding surface. The weakening characteristics of the strength parameters of rock bridges and joints are considered. The models for stability of stepped sliding of bedding slopes are established. The results show that the accuracy of the model is verified by comparing with the planar failure model. In addition, the fracture connectivity rate kY, basic friction angle φb, roughness coefficient JRC and weakening coefficient Kc have significant influences on Fs. In this mode, the greater β3 is, the more significant the reduction of Fs is, and the more unstable the slope is. In addition, the excavation times and slope angle have significant influences on the slope stability. The difference rate between the proposed method and the limit equilibrium solution is less than 1%. In some cases, when the joint surfaces are exposed by excavation, Fs is significantly reduced (the reduction of 22.8% when β=53°), which easily leads to the occurrence of landslides. Meanwhile, with an increase in angle β1 of tensile cracks and height hw of water, Fs significantly decreases. The water pressure is more significant when the outlets are blocked, and the rock slope is most unstable.
-
-
表 1 参数分析图 5参数取值
Table 1 Values of parameters in Fig. 5
参数 kY φb/(°) Kφ Kc JRC JCS
/MPaβ3/(°) β2 /(°) β/(°) L/m β1/(°) 图 5(a) 0.2~1.0(0.1) 20~36(4) 0.8 0.4 6 50 50 40 60 16 60 图 5(b) 0.8 28 0.650.6~0.95
(0.05)0.05~0.40
(0.05)6 30 60 45 60 15 60 图 5(c) 0.65 20 0.6 0.3 0~18(3) 20~100(20) 50 40 60 22 60 图 5(d) 0.6 20 0.8 0.4 10 40 30~75(5) 25~50(5) 58 10 60 -
[1] EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 69–87. doi: 10.1016/S1365-1609(03)00076-5
[2] DA HUANG, CEN D F, MA G W, et al. Step-path failure of rock slopes with intermittent joints[J]. Landslides, 2015, 12(5): 911–926. doi: 10.1007/s10346-014-0517-6
[3] 朱雷, 黄润秋, 严明, 等. 基于裂纹扩展模式的岩质斜坡阶梯状滑移破裂机制研究[J]. 岩土工程学报, 2017, 39(7): 1216–1224. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16953.shtml ZHU Lei, HUANG Run-qiu, YAN Ming, et al. Step-path failure mechanism of rock slopes based on crack coalescence modes in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1216–1224. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16953.shtml
[4] 郭牡丹. 基于岩体结构面特征的三维网络模拟研究[D]. 沈阳: 东北大学, 2014. GUO Mu-dan. Study on 3-Dimensional Network Simulation Based on the Character of Structural Planes in Rock Mass[D]. Shenyang: Northeastern University, 2014. (in Chinese)
[5] 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: . 科学出版社, 2008. HUANG Run-qiu, XU Qiang. Catastrophic landslides in China[M]. Beijing: . China Science Press, 2008. (in Chinese)
[6] GARCÍA M, PASTÉN C, SEPÚLVEDA S A, et al. Dynamic numerical investigation of a stepped-planar rockslide in the Central Andes, Chile[J]. Engineering Geology, 2018, 237: 64–75. doi: 10.1016/j.enggeo.2018.02.001
[7] TANNANT D D, GIORDAN D, MORGENROTH J. Characterization and analysis of a translational rockslide on a stepped-planar slip surface[J]. Engineering Geology, 2017, 220: 144–151. doi: 10.1016/j.enggeo.2017.02.004
[8] ZHAO L H, LI D J, TAN H H, et al. Characteristics of failure area and failure mechanism of a bedding rockslide in Libo County, Guizhou, China[J]. Landslides, 2019, 16(7): 1367–1374. doi: 10.1007/s10346-019-01188-6
[9] 杨绪波. 大型岩质边坡开挖的岩体结构效应研究-以云南澜沧江小湾水电站#4山梁边坡为例[D]. 成都: 成都理工大学,, 2005. YANG Xu-bo. Study on the rock mass structure effect of large rock slope during excavation-taking slope NO. 4 in Xiaowan hydropower project on Lancang river of Yunnan as an example[D]. Chengdu: Chengdu University of Technology, 2005. (in Chinese)
[10] BRIDEAU M A, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30–49. doi: 10.1016/j.geomorph.2008.04.010
[11] 黄润秋, 陈国庆, 唐鹏. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J]. 岩石力学与工程学报, 2017, 36(3): 521–533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm HUANG Run-qiu, CHEN Guo-qing, TANG Peng. Precursor information of locking segment landslides based on transient characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 521–533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm
[12] JENNINGS J E. A mathematical theory for the calculation of the stability of slopes in open cast mine[C]// Proceeding of the Symposium on the Planning Open Pit Mines. Johannesburg, 1970.
[13] 邹宗兴. 顺层岩质滑坡演化动力学研究[D]. 武汉: 中国地质大学, 2014. ZOU Zong-xing. Research on the Evolution Dynamics of the Consequent Bedding Rockslides[D]. Wuhan: China University of Geosciences, 2014. (in Chinese)
[14] 重庆市设计院. 工程地质勘察规范DBJ50—043—2005[S]. 2005. Chongqing Design Institute. Code for Engineering Geological Investigation DBJ50—043—2005[S]. 2005. (in Chinese)
[15] 陈祖煜, 汪小刚, 杨健, 等. 岩质边坡稳定分析—原理、方法、程序[M]. 北京: 中国水利水电出版社, 2005. CHEN Zu-yu, WANG Xiao-gang, YANG Jian, et al. Rock Slope Stability Analysis-Theory Methods and Programs[M]. Beijing: China WaterPower Press, 2005. (in Chinese)
[16] BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287–332. doi: 10.1016/0013-7952(73)90013-6
[17] BARTON N. The shear strength of rock and rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279. https://www.sciencedirect.com/science/article/pii/0148906276900036
[18] BANDIS S, LUMSDEN A C, BARTON N R. Experimental studies of scale effects on the shear behaviour of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(1): 1–21. https://www.sciencedirect.com/science/article/pii/014890628190262X
[19] HOEK E. Rock Engineering[M]. Netherlands: A A Balkema, 1995: 70–72.
[20] PRASSETYO S H, GUTIERREZ M, BARTON N. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton-Bandis model[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 671–682. doi: 10.1016/j.jrmge.2017.01.006
[21] 唐志成, 夏才初, 刘远明. 岩桥渐进弱化的Jennings抗剪强度准则[J]. 岩土工程学报, 2012, 34(11): 2093–2099. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14891.shtml TANG Zhi-cheng, XIA Cai-chu, LIU Yuan-ming. Modified Jennings shear strength criterion based on mechanical weakening model of rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2093–2099. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14891.shtml
[22] 邓华锋, 齐豫, 李建林, 等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634–643. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18591.shtml DENG Hua-feng, QI Yu, LI Jian-lin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634–643. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18591.shtml
[23] ZHANG X P, WONG L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001–1021.
[24] 王根龙, 伍法权, 张茂省. 平面滑动型岩质边坡稳定性极限分析上限法[J]. 工程地质学报, 2011, 19(2): 176–180. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102005.htm WANG Gen-long, WU Fa-quan, ZHANG Mao-sheng. Method of upper bound limit analysis for plane sliding of rock slopes[J]. Journal of Engineering Geology, 2011, 19(2): 176–180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102005.htm
[25] 梁文辉. 锦屏一级水电站引渠边坡稳定性研究[D]. 成都: 西南交通大学, 2009. LIANG Wen-hui. Study on Stability of Approach Channel Slope for Jinping 1 Hydropower Station[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
[26] 舒继森, 王兴中, 周毅勇. 岩石边坡中滑动面水压分布假设的改进[J]. 中国矿业大学学报, 2004, 33(5): 509–512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200405003.htm SHU Ji-sen, WANG Xing-zhong, ZHOU Yi-yong. Improving on assumption for water pressure distributing on failure surface in rock slope[J]. Journal of China University of Mining & Technology, 2004, 33(5): 509–512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200405003.htm
[27] ZHAO L H, ZUO S, LI L, et al. System reliability analysis of plane slide rock slope using Barton-Bandis failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 1–11.