• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩石–混凝土结构面的广义Patton剪切模型

赵衡, 侯继超, 赵明华

赵衡, 侯继超, 赵明华. 岩石–混凝土结构面的广义Patton剪切模型[J]. 岩土工程学报, 2022, 44(11): 2106-2114. DOI: 10.11779/CJGE202211017
引用本文: 赵衡, 侯继超, 赵明华. 岩石–混凝土结构面的广义Patton剪切模型[J]. 岩土工程学报, 2022, 44(11): 2106-2114. DOI: 10.11779/CJGE202211017
ZHAO Heng, HOU Ji-chao, ZHAO Ming-hua. Generalized Patton shear model for rock-concrete joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2106-2114. DOI: 10.11779/CJGE202211017
Citation: ZHAO Heng, HOU Ji-chao, ZHAO Ming-hua. Generalized Patton shear model for rock-concrete joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2106-2114. DOI: 10.11779/CJGE202211017

岩石–混凝土结构面的广义Patton剪切模型  English Version

基金项目: 

国家自然科学基金项目 51978255

湖南省研究生科研创新项目 QL20220089

详细信息
    作者简介:

    赵衡(1983—),男,湖南长沙人,副教授,主要从事桩基础及软土地基处理等研究。E-mail: henrychiu@hnu.edu.cn

    通讯作者:

    侯继超,E-mail: jchou@hnu.edu.cn

  • 中图分类号: TU473.1

Generalized Patton shear model for rock-concrete joints

  • 摘要: 为合理预测工程中常法向刚度(CNS)条件下岩石–混凝土结构面的剪切强度,在经典Patton模型(理想化为规则三角形粗糙体)的基础上进行改进,将规则三角形粗糙体推广到相似三角形粗糙体节理模型,并给出了相应的岩石–混凝土结构面粗糙度量化方法。与规则三角形粗糙体相比,相似三角形粗糙体由于波长各异而导致各个粗糙体所受的局部应力各不相同,进而引起粗糙体异步破坏的现象。其中,各粗糙体的极限破坏荷载和临界剪切位移根据下限理论求解。在此基础上,建立了相似三角形粗糙体结构面上各粗糙体剪切状态演化方程,并推广了经典Patton模型。该广义Patton模型可同时预测规则和相似三角形结构面剪切强度,并在一定条件下可退化为经典Patton模型。最后,通过12组不同工况下的CNS直剪试验验证了本文模型的合理性。
    Abstract: In order to predict the shear strength of the rock-concrete joints subjected to the constant normal stiffness (CNS), the classical Patton model (idealized as regular triangular asperities) is modified, and the regular triangular asperities are extended to similar ones. The quantitative method for the roughness of rock-concrete joints is also given. Compared with the regular ones, the similar triangular asperities carry different local stresses due to different wavelengths, leading to an asynchronous failure. The collapse load and critical shear displacement of every asperity are identified by the lower-bound solution. On this basis, an evolution equation is proposed to quantify the occurrence of local failure, and the classical Patton model is generalized. The generalized Patton model can predict the shear strength of joints of both the regular and the similar triangular asperities, and the current form can be regressed to the classical form under certain conditions. Finally, the proposed model is validated by the observations from 12 groups of CNS direct shear tests.
  • 图  1   Patton双线性剪切模型

    Figure  1.   Patton bilinear shear model

    图  2   相似三角形岩石–混凝土结构面粗糙度量化模型

    Figure  2.   Quantitative model for joints roughness of similar triangular rock-concrete

    图  3   相似三角形岩石–混凝土结构面剪切力学分析模型

    Figure  3.   Shear mechanics model for similar triangular rock-concrete joints

    图  4   应力场

    Figure  4.   Stress fileds

    图  5   应力状态

    Figure  5.   Stress states

    图  6   临界状态线

    Figure  6.   Critical state line

    图  7   全部粗糙体处于剪胀阶段

    Figure  7.   All asperities in dilatancy stage

    图  8   剪胀阶段与残余剪切阶段粗糙体共存

    Figure  8.   The dilatancy stage coexists with the residual shear stage

    图  9   全部粗糙体处于残余剪切阶段

    Figure  9.   All asperities in residual shear stage

    图  10   峰值强度及其对应剪切位移求解流程图

    Figure  10.   Flow chart for solving peak strength and corresponding shear displacement

    图  11   砂岩试样

    Figure  11.   Sandstone samples

    图  12   CNS大型直剪仪

    Figure  12.   CNS shear apparatus

    图  13   岩石–混凝土结构面剪切过程

    Figure  13.   Shear process of rock-concrete structural plane

    图  14   结果验证及对比

    Figure  14.   Verification and comparison of results

    图  15   粗糙体几何参数及岩石材料强度参数对剪切强度的影响

    Figure  15.   Influences of geometric parameters of asperities and strength parameters of rock on shear strength

    表  1   岩石–混凝土结构面试验方案

    Table  1   Test schemes of rock-concrete structural plane

    试验编号 初始法向应力σn0/kPa 法向弹簧刚度
    K/(kPa·mm-1)
    结构面粗糙
    类型
    A1 200 294 λ=10 mm,
    β=20°,n=15
    A2 400 294
    A3 200 588
    A4 200 588
    B1 200 294 λmin=1 mm,
    λmax=14 mm,
    β=20°,n=20
    B2 400 294
    B3 200 588
    B4 200 588
    C1 200 294 λmin=1 mm,
    λmax=17 mm,
    β=20°,n=17
    C2 400 294
    C3 200 588
    C4 200 588
    下载: 导出CSV

    表  2   理论模型的峰值强度、残余强度及峰值剪切位移误差

    Table  2   Peak strengths, residual strengths and peak shear displacement errors of theoretical model  (%)

    编号 峰值误差/% 残余误差/% 峰值剪切位移/% 编号 峰值误差/% 残余误差/% 峰值剪切位移/%
    A1 8.08 -28.37 -1.82 B3 -2.65 35.60 -8.71
    A2 9.95 -24.42 -5.45 B4 2.43 28.73 -9.54
    A3 13.84 -12.39 -6.67 C1 2.15 17.60 -17.71
    A4 13.88 -15.68 -7.17 C2 3.44 18.38 -17.85
    B1 4.29 17.88 -16.00 C3 -0.49 24.49 -16.35
    B2 2.35 18.98 -16.75 C4 1.17 28.57 -19.27
    下载: 导出CSV
  • [1]

    THIRUKUMARAN S, INDRARATNA B. A review of shear strength models for rock joints subjected to constant normal stiffness[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 405–414. doi: 10.1016/j.jrmge.2015.10.006

    [2] 李海波, 刘博, 冯海鹏, 等. 模拟岩石节理试样剪切变形特征和破坏机制研究[J]. 岩土力学, 2008, 29(7): 1741–1746, 1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807006.htm

    LI Hai-bo, LIU Bo, FENG Hai-peng, et al. Study of deformability behaviour and failure mechanism by simulating rock joints sample under different loading conditions[J]. Rock and Soil Mechanics, 2008, 29(7): 1741–1746, 1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807006.htm

    [3]

    GU X F, SEIDEL J P, HABERFIELD C M. Direct shear test of sandstone-concrete joints[J]. International Journal of Geomechanics, 2003, 3(1): 21–33. doi: 10.1061/(ASCE)1532-3641(2003)3:1(21)

    [4] 庄晓莹, 黄润秋, 朱合华. 基于水平集坐标的二维压剪节理动态扩展过程无网格法模拟研究[J]. 岩石力学与工程学报, 2012, 31(11): 2187–2196. doi: 10.3969/j.issn.1000-6915.2012.11.006

    ZHUANG Xiao-ying, HUANG Run-qiu, ZHU He-hua. Simulation for 2d compression-shear joint dynamic propagation process using meshless methods based on level sets coordinates[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2187–2196. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.006

    [5]

    JOHNSTON I W, LAM T S K, WILLIAMS A F. Constant normal stiffness direct shear testing for socketed pile design in weak rock[J]. Géotechnique, 1987, 37(1): 83–89. doi: 10.1680/geot.1987.37.1.83

    [6]

    ZHAO H, HOU J C, ZHANG L, et al. Vertical load transfer for bored piles buried in cohesive intermediate geomaterials[J]. International Journal of Geomechanics, 2020, 20(10): 04020172. doi: 10.1061/(ASCE)GM.1943-5622.0001810

    [7] 夏才初, 喻强锋, 钱鑫, 等. 常法向刚度条件下岩石节理剪切-渗流特性试验研究[J]. 岩土力学, 2020, 41(1): 57–66, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001008.htm

    XIA Cai-chu, YU Qiang-feng, QIAN Xin, et al. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness[J]. Rock and Soil Mechanics, 2020, 41(1): 57–66, 77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001008.htm

    [8]

    BARTON N. The shear strength of rock and rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279.

    [9] 赵坚. 岩石节理剪切强度的JRC-JMC新模型[J]. 岩石力学与工程学报, 1998, 17(4): 1–9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX804.000.htm

    ZHAO Jian. A new JRC JMC shear strength criterion for rock joint[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(4): 1–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX804.000.htm

    [10]

    PATTON F D. Multiple modes of shear failure in rock[C]//Procced 1st Cong Int Soc Rock Mech. Lisbon, 1966.

    [11]

    JAEGER J C. Friction of rocks and stability of rock slopes[J]. Géotechnique, 1971, 21(2): 97–134. doi: 10.1680/geot.1971.21.2.97

    [12]

    SAEB S, AMADEI B. Modelling rock joints under shear and normal loading[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 267–278. https://www.sciencedirect.com/science/article/pii/014890629293660C

    [13] 赵明华, 夏润炎, 尹平保, 等. 考虑软岩剪胀效应的嵌岩桩荷载传递机理分析[J]. 岩土工程学报, 2014, 36(6): 1005–1011. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15737.shtml

    ZHAO Ming-hua, XIA Run-yan, YIN Ping-bao, et al. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005–1011. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15737.shtml

    [14]

    BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51: 101–115. https://www.sciencedirect.com/science/article/pii/S0266352X13000293

    [15]

    SEIDEL J P, COLLINGWOOD B. A new socket roughness factor for prediction of rock socket shaft resistance[J]. Canadian Geotechnical Journal, 2001, 38(1): 138–153. https://www.osti.gov/etdeweb/biblio/20155262

    [16]

    HOU J C, ZHAO H, PENG W Z, et al. A limit solution for predicting side resistance on rock-socketed piles[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021131.

    [17]

    SEIDEL J P, HABERFIELD C M. Towards an understanding of joint roughness[J]. Rock Mechanics and Rock Engineering, 1995, 28(2): 69–92. doi: 10.1007/BF01020062

    [18]

    SEIDEL J P, HABERFIELD C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(5): 539–553. https://www.sciencedirect.com/science/article/pii/S1365160902000564

    [19]

    SEOL H, JEONG S, CHO C, et al. Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 848–861. https://www.sciencedirect.com/science/article/pii/S1365160907001578

    [20] 赵明华, 雷勇, 刘晓明. 基于桩-岩结构面特性的嵌岩桩荷载传递分析[J]. 岩石力学与工程学报, 2009, 28(1): 103–110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901016.htm

    ZHAO Ming-hua, LEI Yong, LIU Xiao-ming. Analysis of load transfer of rock-socketed piles based on characteristics of pile-rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 103–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901016.htm

    [21]

    BARTON N, CHOUBEY V. The Shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1–54.

    [22]

    CHEN W. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Scientific Pub. Co, 1975.

    [23]

    ULUSAY R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014[M]. New York: Springer, 2015.

  • 期刊类型引用(5)

    1. 张翌娜,赖煜,王勇,张建伟,王文轩. 某混凝土重力坝混凝土-基岩胶结面原位直剪试验与破坏模式分析. 水电能源科学. 2025(03): 137-141 . 百度学术
    2. 王开源,景旭,沈宇鹏,赵小林,徐金翠,李志强. 考虑岩石破碎的嵌岩桩承载机理. 科学技术与工程. 2025(15): 6463-6476 . 百度学术
    3. 姜政,陈世江,杜广盛,常建平,周琛鸿,杨付领. 相对法向力下结构面峰值剪切力学性质研究. 矿业研究与开发. 2024(04): 195-202 . 百度学术
    4. 杨凯旋,刘亚楠,赵衡,赵明华. 砂岩-混凝土结构面剪切特性试验研究及离散元模拟. 湖南大学学报(自然科学版). 2024(09): 165-176 . 百度学术
    5. 焦峰,许江,彭守建,何美鑫,张心睿,程亮. 常法向刚度条件下人工结构面剪切力学特性及损伤演化规律试验研究. 煤炭学报. 2023(11): 4065-4077 . 百度学术

    其他类型引用(4)

图(15)  /  表(2)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  50
  • PDF下载量:  29
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-11-10
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回