Coupling model for consolidation and contaminant transport in compactedclay liners under non-isothermal condition
-
摘要: 考虑到污染场地内部产热会使得压实黏土衬垫处于非等温分布状态,建立了非等温分布条件下压实黏土衬垫中固结与污染物运移的耦合模型,并采用有限差分法对该耦合模型进行了求解。将所建耦合模型的计算结果分别与热扩散试验结果和已有理论模型的计算结果展开对比分析,对耦合模型的正确性进行了验证。基于所建耦合模型,通过某一算例分析了温度梯度M、加荷速率Q和Freundlich吸附系数Kf对污染物运移过程的影响。结果表明:污染物浓度和底部通量会随M绝对值的增大而增大,且一定温度梯度下的底部通量可达不考虑温度梯度时底部通量的2倍以上;Q的增大一方面会减慢污染物运移速率,另一方面会使得运移过程达到稳态时的污染物浓度增大;Kf的增大会减慢污染物运移过程,与不考虑吸附作用相比,考虑吸附作用可使得运移过程达到稳态时所需时间延长3倍及以上。Abstract: Considering that the heat production inside the contaminated site will make the compacted clay liner (CCL) be in a non-isothermal distribution state, a consolidation-contaminant transport coupling model for the CCL subjected to non-isothermal condition is established, and the finite difference method is used to solve the coupling model. The correctness of the established coupling model is verified by comparing the calculated results of the coupling model with the results of the thermal diffusion tests and those of the existing theoretical models, respectively. Based on the established coupling model, the effects of temperature gradient, loading rate and Freundlich adsorption coefficient on the transport process of contaminant are analyzed through an example. The results show that the concentration and bottom flux of contaminants increase with the increase of the absolute value of temperature gradient. Under a certain temperature gradient, the bottom flux of contaminant can be more than twice the bottom flux without considering the temperature gradient. On the one hand, the increase of loading rate will slow down the transport rate of contaminant. On the other hand, it will increase the concentration of contaminant when the transport process reaches a steady state. The increase of Freundlich adsorption coefficient will slow down the transport process of contaminant. The time required for the transport process to reach the steady state can be prolonged by three times or more when the adsorption effect is considered.
-
-
图 2 耦合模型计算结果和Rosanne等[19]热扩散试验结果对比
Figure 2. Comparison between calculated results by proposed coupling model and test results by Rosanne et al.
图 3 本文耦合模型与张文杰等[7]解析解计算结果的对比
Figure 3. Comparison between proposed coupling model and analytical solution proposed by Zhang et al.
-
[1] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1–46. (inChinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm
[2] SHACKELFORD C D. The ISSMGE Kerry Rowe Lecture: The role of diffusion in environmental geotechnics 1[J]. Canadian Geotechnical Journal, 2014, 51(11): 1219–1242. doi: 10.1139/cgj-2013-0277
[3] 张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841 –1848. ZHANG Chun-hua, WU Jia-wei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841–1848. (in Chinese)
[4] TOUZE-FOLTZ N, XIE H J, STOLTZ G. Performance issues of barrier systems for landfills: a review[J]. Geotextiles and Geomembranes, 2021, 49(2): 475-488. doi: 10.1016/j.geotexmem.2020.10.016
[5] FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 590–601.
[6] 陈云敏, 谢海建, 柯瀚, 等. 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28(4): 521–524. doi: 10.3321/j.issn:1000-4548.2006.04.018 CHEN Yun-min, XIE Hai-jian, KE Han, et al. Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 521–524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.04.018
[7] 张文杰, 黄依艺, 张改革. 填埋场污染物在有限厚度土层中一维对流–扩散–吸附解析解[J]. 岩土工程学报, 2013, 35(7): 1197–1201. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307004.htm ZHANG Wen-jie, HUANG Yi-yi, ZHANG Gai-ge. Analytical solution for 1D advection-diffusion-adsorption transport of landfill contaminants through a soil layer with finite thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1197–1201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307004.htm
[8] FENG S J, PENG M Q, CHEN Z L, et al. Transient analytical solution for one-dimensional transport of organic contaminants through GM/GCL/SL composite liner[J]. Science of the Total Environment, 2019, 650: 479–492. doi: 10.1016/j.scitotenv.2018.08.413
[9] PU H F, QIU J W, ZHANG R J, et al. Analytical solutions for organic contaminant diffusion in triple-layer composite liner system considering the effect of degradation[J]. Acta Geotechnica, 2020, 15(4): 907–921. doi: 10.1007/s11440-019-00783-0
[10] CALDER G V, STARK T D. Aluminum reactions and problems in municipal solid waste landfills[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2010, 14(4): 258–265. doi: 10.1061/(ASCE)HZ.1944-8376.0000045
[11] JAFARI N H, STARK T D, THALHAMER T. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills[J]. Waste Management, 2017, 59: 286–301. doi: 10.1016/j.wasman.2016.10.052
[12] 吴珣, 施建勇, 何俊. 非等温条件下有机污染物在黏土衬垫中的扩散分析[J]. 水文地质工程地质, 2014, 41(3): 120–124. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403024.htm WU Xun, SHI Jian-yong, HE Jun. An analysis of organic contaminant diffusion through clay liner under the condition of transient temperature[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 120–124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403024.htm
[13] XIE H J, ZHANG C H, SEDIGHI M, et al. An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media[J]. Computers and Geotechnics, 2015, 69: 329–337. doi: 10.1016/j.compgeo.2015.06.012
[14] 张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018. ZHANG Chun-hua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and Its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[15] YAN H X, SEDIGHI M, XIE H J. Thermally induced diffusion of chemicals under steady-state heat transfer in saturated porous media[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119664. doi: 10.1016/j.ijheatmasstransfer.2020.119664
[16] PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120(9): 448–458.
[17] PENG M Q, FENG S J, CHEN H X, et al. An analytical solution for organic pollutant diffusion in a triple-layer composite liner considering the coupling influence of thermal diffusion[J]. Computers and Geotechnics, 2021, 137: 104283. doi: 10.1016/j.compgeo.2021.104283
[18] MON E E, HAMAMOTO S, KAWAMOTO K, et al. Temperature effects on solute diffusion and adsorption in differently compacted Kaolin clay[J]. Environmental Earth Sciences, 2016, 75(7): 1–9.
[19] ROSANNE R, PASZKUTA M, TEVISSEN E, et al. Thermodiffusion in compact clays[J]. Journal of Colloid and Interface Science, 2003, 267(1): 194–203. doi: 10.1016/S0021-9797(03)00670-2
[20] ROSANNE M, PASZKUTA M, ADLER P M. Thermodiffusional transport of electrolytes in compact clays[J]. Journal of Colloid and Interface Science, 2006, 299(2): 797–805. doi: 10.1016/j.jcis.2006.03.002
[21] YU Y, ROWE R K. Modelling deformation and strains induced by waste settlement in a centrifuge test[J]. Canadian Geotechnical Journal, 2018, 55(8): 1116–1129. doi: 10.1139/cgj-2017-0558
[22] CHEN Y M, ZHAN T L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1): 86–95. doi: 10.1016/j.wasman.2008.02.024
[23] LIU J Y, XU D M, ZHAO Y C, et al. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang Municipal Landfill[J]. Environmental Management, 2004, 34(3): 441–448. doi: 10.1007/s00267-004-2762-2
[24] PU H F, FOX P J. Model for coupled large strain consolidation and solute transport in layered soils[J]. International Journal of Geomechanics, 2016, 16(2): 04015064. doi: 10.1061/(ASCE)GM.1943-5622.0000539
[25] YAN H X, WU J W, THOMAS H R, et al. Analytical model for coupled consolidation and diffusion of organic contaminant transport in triple landfill liners[J]. Geotextiles and Geomembranes, 2021, 49(2): 489–499. doi: 10.1016/j.geotexmem.2020.10.019
[26] XIE H, YAN H, FENG S, et al. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation[J]. Environmental Science & Pollution Research, 2016, 23(19): 1–14.
[27] 田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278–287. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202009.htm TIAN Gai-lei, ZHANG Zhi-hong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278–287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202009.htm
[28] LEE J, FOX P J, LENHART J J. Investigation of consolidation-induced solute transport. I: Effect of consolidation on transport parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1228–1238. doi: 10.1061/(ASCE)GT.1943-5606.0000047
[29] 张志红, 许照刚, 杜修力. 吸附模式及固结变形对溶质运移规律的影响研究[J]. 土木工程学报, 2013, 46(1): 104– 111. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301012.htm ZHANG Zhi-hong, XU Zhao-gang, DU Xiu-li. Study on the effects of adsorption modes and consolidation deformation on solute transport[J]. China Civil Engineering Journal, 2013, 46(1): 104–111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301012.htm
[30] PU H, FOX, P J, SHACKELFORD C D, et al. Assessment of consolidation-induced contaminant transport for compacted clay liner systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(3): 04015091.
[31] ALSHAWABKEH A N, RAHBAR N. Parametric study of one-dimensional solute transport in deformable porous media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1001–1010.
[32] CHO W J, LEE J O, CHUN K S. The temperature effects on hydraulic conductivity of compacted bentonite[J]. Applied Clay Science, 1999, 14(1/2/3): 47-58.
[33] 何俊, 胡晓瑾, 颜兴, 等. 黏土渗透性温度效应试验[J]. 水利水电科技进展, 2017, 37(3): 55–60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201703009.htm HE Jun, HU Xiao-jin, YAN Xing, et al. Experiments on temperature effect of hydraulic conductivity of compacted clay[J]. Advances in Science and Technology of Water Resources, 2017, 37(3): 55–60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201703009.htm
[34] 张宇宁, 陈宇龙, 李博. 饱和黏土的一维热固结特性试验研究[J]. 东北大学学报(自然科学版), 2016, 37(12): 1794–1799. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201612026.htm ZHANG Yu-ning, CHEN Yu-long, LI Bo. Experimental study of one-dimensional thermal consolidation of saturated clays[J]. Journal of Northeastern University (Natural Science), 2016, 37(12): 1794–1799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201612026.htm
[35] 费康, 戴迪, 付长郓. 热–力耦合作用下黏性土体积变形特性试验研究[J]. 岩土工程学报, 2019, 41(9): 1752–1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909023.htm FEI Kang, DAI Di, FU Chang-yun. Experimental study on volume change behavior of clay subjected to thermo-mechanical loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1752–1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909023.htm
[36] SMITH D W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 693–722.
[37] 尹铁锋, 刘干斌, 郭桢, 等. 竖井地基热排水固结理论初探[J]. 水文地质工程地质, 2014, 41(3): 41–46. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403010.htm YIN Tie-feng, LIU Gan-bin, GUO Zhen, et al. A preliminary study of the theory of consolidation by vertical thermal drain[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 41–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403010.htm
[38] HARRIS K R, WOOLF L A. Pressure and temperature dependence of the self-diffusion coefficient of water and oxygen-18 water[J]. Journal of the Chemical Society, 1980, 76: 377–385.
[39] ROWE R K. Short- and long-term leakage through composite liners. The 7th Arthur casagrande lecture[J]. Canadian Geotechnical Journal, 2012, 49(2): 141–169.