• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

长距离深埋岩石地层顶管摩阻力计算方法研究

钟祖良, 刁小军, 刘新荣

钟祖良, 刁小军, 刘新荣. 长距离深埋岩石地层顶管摩阻力计算方法研究[J]. 岩土工程学报, 2022, 44(11): 2063-2070. DOI: 10.11779/CJGE202211012
引用本文: 钟祖良, 刁小军, 刘新荣. 长距离深埋岩石地层顶管摩阻力计算方法研究[J]. 岩土工程学报, 2022, 44(11): 2063-2070. DOI: 10.11779/CJGE202211012
ZHONG Zu-liang, DIAO Xiao-jun, LIU Xin-rong. Method for calculating frictional resistance of long-distance pipejacking in deeply buried rock strata[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2063-2070. DOI: 10.11779/CJGE202211012
Citation: ZHONG Zu-liang, DIAO Xiao-jun, LIU Xin-rong. Method for calculating frictional resistance of long-distance pipejacking in deeply buried rock strata[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2063-2070. DOI: 10.11779/CJGE202211012

长距离深埋岩石地层顶管摩阻力计算方法研究  English Version

基金项目: 

重庆市技术创新与应用示范专项社会民生类重点研发项目 cstc2018jscx-mszdX0071

详细信息
    作者简介:

    钟祖良(1980—),男,副教授,博士,博士生导师,主要从事地下工程研究工作。E-mail: haiou983@126.com

  • 中图分类号: TU43

Method for calculating frictional resistance of long-distance pipejacking in deeply buried rock strata

  • 摘要: 顶管法具有掘进效率高、安全环保、质量可靠等优点,在土质地层中得到广泛推广。为满足水利及市政工程快速建设的需求,顶管法也在岩石地层中进行应用,但对于长距离深埋岩石顶管摩阻力计算方法的研究较为匮乏。依托国内首个采用长距离岩石顶管法施工的重庆观景口水利枢纽工程,通过现场顶力测试试验研究发现,管节–围岩间摩阻力主要受管外间隙填充物和注入的润滑泥浆的影响,且前者的影响较大。根据顶管超挖间隙中沉渣填充程度的不同,提出了3种管节–围岩接触力学模型,并基于围岩弹塑性理论以及管节与填充物之间的协调变形,推导了各力学模型的顶管摩阻力计算公式。通过将摩阻力计算值与实测值对比,验证了摩阻力公式在岩石地层顶管顶力计算中的适用性。
    Abstract: The pipe jacking method has the advantages of high efficiency, safety, environmental protection and reliable quality, and is widely used in soil strata. In order to meet the demand for rapid construction of water conservancy projects and municipal projects, pipe jacking is also used in rocky strata, but there is a lack of research on the calculation of the frictional resistance of long-distance pipe jacking in deeply buried rock. Based on the first long-distance pipe jacking case in rock in China, Guanjingkou water conservancy project of Chongqing, through the field tests on jacking force it is found that the pipe- rock friction resistance is mainly affected by the filling of over-excavation gap and the injected lubricating mud, and the former has a greater impact. According to different degrees of the filling of the over-excavated gap with sediment, three mechanical models for the contact between pipe and rock are proposed, and based on the elastic-plasticity theory and the coordinated deformation between the pipe and the filling, the formulae for calculating the frictional resistance of the pipe are derived for each mechanical model. The applicability of the formulae for the frictional resistance in deeply buried rock strata is verified by comparing the calculated values of the frictional resistance with the measured ones.
  • 图  1   #6隧洞工程地质纵剖面图

    Figure  1.   Geological longitudinal section of tunnel No. 6

    图  2   管节结构示意图

    Figure  2.   Schematic diagram of pipe structure

    图  3   #6隧洞顶管顶进阻力与顶进距离关系曲线

    Figure  3.   Relationship between jacking resistance and jacking distance of tunnel No. 6

    图  4   模型Ⅰ:管节–围岩点接触模型

    Figure  4.   ModelⅠ: point contact model for pipe-surrounding rock

    图  5   模型Ⅱ:管节–围岩全接触模型

    Figure  5.   Model II: full contact model for pipe-surrounding rock

    图  6   双层圆筒模型

    Figure  6.   Double-layer cylinder model

    图  7   模型Ⅲ:管节–围岩部分接触模型

    Figure  7.   Model III: partial contact model for pipe-surrounding rock

    图  8   #6隧洞Ⅰ段摩阻力对比

    Figure  8.   Comparison of friction resistance for section Ⅰ of tunnel No. 6

    图  9   #6隧洞Ⅱ段摩阻力对比

    Figure  9.   Comparison of friction resistance for section Ⅱ of tunnel No. 6

    图  10   #6隧洞Ⅲ段摩阻力对比

    Figure  10.   Comparison of friction resistance for section Ⅲ of tunnel No. 6

    表  1   现场各段摩阻力实测值与计算值之比

    Table  1   Ratios of measured to calculated frictional resistance

    摩擦系数 实测值/计算值
    Ⅰ段 Ⅱ段 Ⅲ段
    0.2 0.41 28.65 2.93
    0.3 0.28 19.10 1.95
    0.4 0.21 14.32 1.46
    0.5 0.16 11.46 1.17
    下载: 导出CSV

    表  2   #6隧洞工程参数

    Table  2   Parameters of tunnel No. 6

    工程参数 Ⅰ段 Ⅱ段 Ⅲ段
    顶进距离/m 0~586 586~599 599~662
    隧洞埋深/m 16~77 77~81 81~109
    地层岩性 泥岩 砂岩 砂岩
    围岩分类 Ⅳ级 Ⅲ级 Ⅲ级
    下载: 导出CSV

    表  3   现场围岩、管节和填充物力学参数

    Table  3   Mechanical parameters of surrounding rock, pipe and filling

    项目 密度
    /(g·cm-3)
    弹性模量/GPa 泊松比 内摩擦角/(°) 黏聚力/MPa
    砂岩 2.54 2.5 0.31 30.5 0.50
    泥岩 2.51 1.5 0.35 26.1 0.25
    管节 2.50 34.5 0.20
    填充物 1.5×10-3 0.35
    下载: 导出CSV
  • [1]

    SOFIANOS A I, LOUKAS P, CHANTZAKOS C. Pipe jacking a sewer under Athens[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 193–203. doi: 10.1016/S0886-7798(03)00108-1

    [2]

    MILLIGAN G W E, NORRIS P. Pipe-soil interaction during pipe jacking[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1999, 137(1): 27–44. doi: 10.1680/gt.1999.370104

    [3]

    HASLEM R F. Pipe-jacking forces: from practice to theory[J]. Thomas Telford, 1986: 173.

    [4] 叶艺超, 彭立敏, 杨伟超, 等. 考虑泥浆触变性的顶管顶力计算方法[J]. 岩土工程学报, 2015, 37(9): 1653–1659. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509016.htm

    YE Yi-chao, PENG Li-min, YANG Wei-chao, et al. Calculation of jacking force for pipe-jacking considering mud slurry thixotropy[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1653–1659. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509016.htm

    [5] 王双, 夏才初, 葛金科. 考虑泥浆套不同形态的顶管管壁摩阻力计算公式[J]. 岩土力学, 2014, 35(1): 159–166, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401024.htm

    WANG Shuang, XIA Cai-chu, GE Jin-ke. Formulae of lateral friction resistance for pipe-jacking considering different forms of mud screen[J]. Rock and Soil Mechanics, 2014, 35(1): 159–166, 174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401024.htm

    [6] 张鹏, 谈力昕, 马保松. 考虑泥浆触变性和管土接触特性的顶管摩阻力公式[J]. 岩土工程学报, 2017, 39(11): 2043–2049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711014.htm

    ZHANG Peng, TAN Li-xin, MA Bao-song. Formulae for frictional resistance considering mud thixotropy and pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2043–2049. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711014.htm

    [7]

    TERZAGHI K T. Theoretical Soil Mechanics[M]. New York: John Wiley & Sons Inc, 1943.

    [8] 给水排水工程管道结构设计规范: GB 50332—2002[S]. 2003.

    Structural design code for pipelines of water supply and waste water engineering: GB 50332—2002[S]. 2003. (in Chinese)

    [9]

    Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction[S]. Virginia: The American Society of Civil Engineers, 2001.

    [10]

    ATV-A 161 E-90 Structural Calculation of Driven Pipes[S]. Hennef: German ATV Rules and Standards, 1990.

    [11]

    Pipe-Jacking Application[S]. Tokyo: Japan Micro Tunneling Association, 2000.

    [12]

    ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183–196. doi: 10.1016/j.tust.2016.09.005

    [13]

    ATKINSON, J H, POTTS, D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203–215. doi: 10.1680/geot.1977.27.2.203

    [14]

    STAHELI K. Jacking Force Prediction: An Interface Friction Approach Based on Pipe Surface Roughness[D]. Atlanta: Georgia Institute of Technology, 2006.

    [15]

    BARLA M, CAMUSSO M, AIASSA S. Analysis of jacking forces during microtunnelling in limestone[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 668–683. doi: 10.1016/j.tust.2006.01.002

    [16]

    SHEIL B B, CURRAN B G, MCCABE B A. Experiences of utility microtunnelling in Irish limestone, mudstone and sandstone rock[J]. Tunnelling and Underground Space Technology, 2016, 51: 326–337. doi: 10.1016/j.tust.2015.10.019

    [17]

    ONG D E L, CHOO C S. Assessment of non-linear rock strength parameters for the estimation of pipe-jacking forces. Part 1. Direct shear testing and backanalysis[J]. Engineering Geology, 2018, 244: 159–172.

    [18]

    ZHONG Z L, LI C, LIU X R, et al. Assessment of experimental friction parameters and contact property of pipe string for the estimation and verification of a solution for pipe stuck in the China's first rock pipe jacking[J]. Tunnelling and Underground Space Technology, 2021, 107: 103671.

    [19]

    LI C, ZHONG Z L, LIU X R, et al. The investigation of ultra-long-distance concrete pipe stuck in quartz sandstone formation using numerical simulation[J]. Arabian Journal of Geosciences, 2018, 11(21): 1–17.

    [20]

    STEIN D, MÖLLERS K, BIELECKI R, et al. Microtunnelling: Installation and Renewal of Nonman-Size Supply and Sewage Lines by the Trenchless Construction Method[M]. Berlin: Ernst & Sohn Verlag fur Architektur und technische Wissenschaften, 1989.

    [21]

    CHOO C S, ONG D E L. Evaluation of pipe-jacking forces based on direct shear testing of reconstituted tunneling rock spoils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(10): 4015044.

    [22] YU Xue-fu. Stability Analysis of Surrounding Rock of Underground Engineering[M]. Beijing: China Coal Industry Publishing House, 1983. (in Chinese)
    [23]

    VLACHOPOULOS N, DIEDERICHS M S. Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 131–146.

图(10)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回