Method for calculating frictional resistance of long-distance pipejacking in deeply buried rock strata
-
摘要: 顶管法具有掘进效率高、安全环保、质量可靠等优点,在土质地层中得到广泛推广。为满足水利及市政工程快速建设的需求,顶管法也在岩石地层中进行应用,但对于长距离深埋岩石顶管摩阻力计算方法的研究较为匮乏。依托国内首个采用长距离岩石顶管法施工的重庆观景口水利枢纽工程,通过现场顶力测试试验研究发现,管节–围岩间摩阻力主要受管外间隙填充物和注入的润滑泥浆的影响,且前者的影响较大。根据顶管超挖间隙中沉渣填充程度的不同,提出了3种管节–围岩接触力学模型,并基于围岩弹塑性理论以及管节与填充物之间的协调变形,推导了各力学模型的顶管摩阻力计算公式。通过将摩阻力计算值与实测值对比,验证了摩阻力公式在岩石地层顶管顶力计算中的适用性。Abstract: The pipe jacking method has the advantages of high efficiency, safety, environmental protection and reliable quality, and is widely used in soil strata. In order to meet the demand for rapid construction of water conservancy projects and municipal projects, pipe jacking is also used in rocky strata, but there is a lack of research on the calculation of the frictional resistance of long-distance pipe jacking in deeply buried rock. Based on the first long-distance pipe jacking case in rock in China, Guanjingkou water conservancy project of Chongqing, through the field tests on jacking force it is found that the pipe- rock friction resistance is mainly affected by the filling of over-excavation gap and the injected lubricating mud, and the former has a greater impact. According to different degrees of the filling of the over-excavated gap with sediment, three mechanical models for the contact between pipe and rock are proposed, and based on the elastic-plasticity theory and the coordinated deformation between the pipe and the filling, the formulae for calculating the frictional resistance of the pipe are derived for each mechanical model. The applicability of the formulae for the frictional resistance in deeply buried rock strata is verified by comparing the calculated values of the frictional resistance with the measured ones.
-
Keywords:
- pipe jacking /
- rock stratum /
- frictional resistance /
- jacking force /
- formula
-
-
表 1 现场各段摩阻力实测值与计算值之比
Table 1 Ratios of measured to calculated frictional resistance
摩擦系数 实测值/计算值 Ⅰ段 Ⅱ段 Ⅲ段 0.2 0.41 28.65 2.93 0.3 0.28 19.10 1.95 0.4 0.21 14.32 1.46 0.5 0.16 11.46 1.17 表 2 #6隧洞工程参数
Table 2 Parameters of tunnel No. 6
工程参数 Ⅰ段 Ⅱ段 Ⅲ段 顶进距离/m 0~586 586~599 599~662 隧洞埋深/m 16~77 77~81 81~109 地层岩性 泥岩 砂岩 砂岩 围岩分类 Ⅳ级 Ⅲ级 Ⅲ级 表 3 现场围岩、管节和填充物力学参数
Table 3 Mechanical parameters of surrounding rock, pipe and filling
项目 密度
/(g·cm-3)弹性模量/GPa 泊松比 内摩擦角/(°) 黏聚力/MPa 砂岩 2.54 2.5 0.31 30.5 0.50 泥岩 2.51 1.5 0.35 26.1 0.25 管节 2.50 34.5 0.20 — — 填充物 — 1.5×10-3 0.35 — — -
[1] SOFIANOS A I, LOUKAS P, CHANTZAKOS C. Pipe jacking a sewer under Athens[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 193–203. doi: 10.1016/S0886-7798(03)00108-1
[2] MILLIGAN G W E, NORRIS P. Pipe-soil interaction during pipe jacking[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1999, 137(1): 27–44. doi: 10.1680/gt.1999.370104
[3] HASLEM R F. Pipe-jacking forces: from practice to theory[J]. Thomas Telford, 1986: 173.
[4] 叶艺超, 彭立敏, 杨伟超, 等. 考虑泥浆触变性的顶管顶力计算方法[J]. 岩土工程学报, 2015, 37(9): 1653–1659. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509016.htm YE Yi-chao, PENG Li-min, YANG Wei-chao, et al. Calculation of jacking force for pipe-jacking considering mud slurry thixotropy[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1653–1659. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509016.htm
[5] 王双, 夏才初, 葛金科. 考虑泥浆套不同形态的顶管管壁摩阻力计算公式[J]. 岩土力学, 2014, 35(1): 159–166, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401024.htm WANG Shuang, XIA Cai-chu, GE Jin-ke. Formulae of lateral friction resistance for pipe-jacking considering different forms of mud screen[J]. Rock and Soil Mechanics, 2014, 35(1): 159–166, 174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401024.htm
[6] 张鹏, 谈力昕, 马保松. 考虑泥浆触变性和管土接触特性的顶管摩阻力公式[J]. 岩土工程学报, 2017, 39(11): 2043–2049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711014.htm ZHANG Peng, TAN Li-xin, MA Bao-song. Formulae for frictional resistance considering mud thixotropy and pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2043–2049. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711014.htm
[7] TERZAGHI K T. Theoretical Soil Mechanics[M]. New York: John Wiley & Sons Inc, 1943.
[8] 给水排水工程管道结构设计规范: GB 50332—2002[S]. 2003. Structural design code for pipelines of water supply and waste water engineering: GB 50332—2002[S]. 2003. (in Chinese)
[9] Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction[S]. Virginia: The American Society of Civil Engineers, 2001.
[10] ATV-A 161 E-90 Structural Calculation of Driven Pipes[S]. Hennef: German ATV Rules and Standards, 1990.
[11] Pipe-Jacking Application[S]. Tokyo: Japan Micro Tunneling Association, 2000.
[12] ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183–196. doi: 10.1016/j.tust.2016.09.005
[13] ATKINSON, J H, POTTS, D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203–215. doi: 10.1680/geot.1977.27.2.203
[14] STAHELI K. Jacking Force Prediction: An Interface Friction Approach Based on Pipe Surface Roughness[D]. Atlanta: Georgia Institute of Technology, 2006.
[15] BARLA M, CAMUSSO M, AIASSA S. Analysis of jacking forces during microtunnelling in limestone[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 668–683. doi: 10.1016/j.tust.2006.01.002
[16] SHEIL B B, CURRAN B G, MCCABE B A. Experiences of utility microtunnelling in Irish limestone, mudstone and sandstone rock[J]. Tunnelling and Underground Space Technology, 2016, 51: 326–337. doi: 10.1016/j.tust.2015.10.019
[17] ONG D E L, CHOO C S. Assessment of non-linear rock strength parameters for the estimation of pipe-jacking forces. Part 1. Direct shear testing and backanalysis[J]. Engineering Geology, 2018, 244: 159–172.
[18] ZHONG Z L, LI C, LIU X R, et al. Assessment of experimental friction parameters and contact property of pipe string for the estimation and verification of a solution for pipe stuck in the China's first rock pipe jacking[J]. Tunnelling and Underground Space Technology, 2021, 107: 103671.
[19] LI C, ZHONG Z L, LIU X R, et al. The investigation of ultra-long-distance concrete pipe stuck in quartz sandstone formation using numerical simulation[J]. Arabian Journal of Geosciences, 2018, 11(21): 1–17.
[20] STEIN D, MÖLLERS K, BIELECKI R, et al. Microtunnelling: Installation and Renewal of Nonman-Size Supply and Sewage Lines by the Trenchless Construction Method[M]. Berlin: Ernst & Sohn Verlag fur Architektur und technische Wissenschaften, 1989.
[21] CHOO C S, ONG D E L. Evaluation of pipe-jacking forces based on direct shear testing of reconstituted tunneling rock spoils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(10): 4015044.
[22] YU Xue-fu. Stability Analysis of Surrounding Rock of Underground Engineering[M]. Beijing: China Coal Industry Publishing House, 1983. (in Chinese) [23] VLACHOPOULOS N, DIEDERICHS M S. Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 131–146.