Effects of salinized deterioration and aeolian ullage on soils in undercutting areas of earthen ruins in arid regions (Ⅲ): capillary process
-
摘要: 毛细过程是干旱区土遗址底部掏蚀区发生盐渍劣化效应的主要途径,同时也是其发生风蚀损耗效应的重要前提。通过对3处典型的土遗址开展全年四季正常天气、降雨和降雪条件下地基和掏蚀区含水率变化的实时监测数据分析,发现降雨(雪)天气是掏蚀区毛细过程的诱发因素;并结合室内掏蚀区毛细模拟试验,表明地基土塑限值是掏蚀区发生毛细过程临界条件。依托15处干旱地区不同时代土遗址掏蚀区的取样与模拟试验结果,在充分考虑其毛细过程特征的基础上,通过引入毛细吸水率、蒸发速率等变量建立了毛细水上升最大高度理论计算模型,模型计算结果表明当误差修正系数ε=0.9时,其绝对误差均小于1 cm。研究结果为干旱区土遗址掏蚀病害的发育机理研究与防治提供了重要的理论支撑与参考。Abstract: The capillary process is the main way of salinized deterioration effect and the important premise of aeolian ullage effect in undercutting areas at the bottom of earthen ruins in arid regions. By analyzing the real-time monitoring data of changes in the moisture content in the ground and undercutting areas at three typical earthen sites under normal weather in four seasons, rainfall and snow conditions, it is found that the rainfall (snow) weather is the inducing factor for the capillary process in the undercutting areas. Combined with the laboratory capillary simulation experiment, it is shown that the plastic limit of soil is the critical condition for the capillary process in the undercutting areas. Then based on the sampling and simulation experimental results of undercutting areas of 15 earthen ruins with different ages in arid regions, a theoretical model for the maximum height of capillary water rise is established by introducing the variables such as capillary water absorption, evaporation rate, etc. The calculated results by the theoretical model show that the absolute errors are less than 1 cm when the error correction coefficient is ε=0.9. The above researches provide important theoretical support and reference for the development mechanism and prevention of diseases in undercutting areas at the bottom of earthen ruins in arid regions.
-
Keywords:
- undercutting area /
- capillary process /
- inducing factor /
- critical condition /
- height model
-
-
表 1 调查区气候特征及遗址土参数
Table 1 Climate characteristics and soil parameters in investigation area
遗址名称 遗址地点 气候特征 含水率/% 密度ρ/(g·cm-3) 相对质量密度Gs 孔隙比e 有效粒径d10 /(10-6 m) 海森公式计算高度H/m 现场实测高度h / m 雷墩子(汉) 瓜州 极干旱 1.35 1.58 2.65 0.695 5.9 2.44 0.062 老师兔(唐) 瓜州 极干旱 0.95 1.67 2.53 0.529 7.2 2.62 0.080 墩湾(宋) 敦煌 极干旱 1.07 1.74 2.67 0.551 7.7 2.36 0.080 高闸沟(明) 嘉峪关 极干旱 0.75 1.56 2.58 0.654 3.8 4.02 0.075 五截堡(清) 瓜州 极干旱 0.55 1.54 2.53 0.652 2.3 6.67 0.075 南乐堡(汉) 民勤 干旱 1.89 1.54 2.55 0.687 7.4 1.97 0.089 大庙城(唐) 金昌 干旱 1.75 1.46 2.50 0.735 8.6 1.58 0.075 回回城(宋) 金昌 干旱 3.75 1.60 2.65 0.718 6.5 2.14 0.070 镇北堡(明) 银川 干旱 0.35 1.57 2.47 0.579 5.6 3.09 0.125 文一(清) 民勤 干旱 0.89 1.65 2.53 0.547 3.9 4.69 0.128 玉山(汉) 永登 半干旱 3.11 1.49 2.53 0.751 3.0 4.44 0.150 柳州城(唐) 白银 半干旱 3.13 1.43 2.58 0.861 2.2 5.28 0.050 等等(宋) 永登 半干旱 1.89 1.54 2.50 0.653 3.6 4.25 0.085 明长城(明) 永登 半干旱 1.45 1.58 2.62 0.682 3.4 4.31 0.085 满城(清) 永登 半干旱 4.08 1.51 2.67 0.842 3.4 3.49 0.070 表 2 15处遗址土的相关计算参数
Table 2 Relevant parameters of 15 earthen archaeological sites
遗址点 毛细吸水率/(g·cm-2·s0.5) 蒸发速率/(g·cm-2·s-1) 孔隙率n 雷墩子 0.03903 4.0184×10-5 0.410 老师兔 0.02241 8.7655×10-6 0.346 墩湾 0.01774 5.0415×10-6 0.355 高闸沟 0.01812 5.7046×10-6 0.396 五截堡 0.05755 5.8295×10-5 0.395 南乐堡 0.06620 4.8478×10-5 0.407 大庙城 0.00842 1.0571×10-6 0.424 回回城 0.01405 3.8279×10-6 0.418 镇北堡 0.04531 1.4515×10-5 0.367 文一 0.00838 4.9548×10-7 0.354 玉山 0.06930 2.0184×10-5 0.429 柳州城 0.07071 1.5835×10-4 0.463 等等 0.04503 2.7839×10-5 0.395 明长城 0.05034 3.4173×10-5 0.406 满城 0.01595 4.5743×10-6 0.457 表 3 不同误差修正条件下现场实测值与理论计算值比对
Table 3 Comparison between measured and calculated values under different error correction conditions
遗址点 现场实测高度/cm 理论计算高度/cm ε=1.0 ε=0.9 ε=0.8 雷墩子 6.2 5.6 5.9 6.2 老师兔 8.0 7.4 7.8 8.3 墩湾 8.0 7.7 8.1 8.6 高闸沟 7.5 7.0 7.3 7.8 五截堡 7.5 6.9 7.3 7.7 南乐堡 8.9 8.6 9.1 9.6 大庙城 7.5 7.3 7.7 8.1 回回城 7.0 6.4 6.8 7.2 镇北堡 12.5 11.3 12.0 12.7 文一 12.8 11.6 12.2 12.9 玉山 15.0 13.6 14.3 15.2 柳州城 5.0 4.8 5.0 5.3 等等 8.5 7.8 8.3 8.8 明长城 8.5 7.8 8.2 8.7 满城 7.0 6.4 6.7 7.1 -
[1] 胡玮. 夯土遗址掏蚀病害发育特征与影响因素研究[D]. 兰州: 兰州大学, 2014. HU Wei. Development Characteristics and Influences of Rammed Earthen Sites Basal Sapping Diseases[D]. Lanzhou: Lanzhou University, 2014. (in Chinese)).
[2] 李最雄, 赵林毅, 孙满利. 中国丝绸之路土遗址的病害及PS加固[J]. 岩石力学与工程学报, 2009, 28(5): 1047–1054. doi: 10.3321/j.issn:1000-6915.2009.05.022 LI Zui-xiong, ZHAO Lin-yi, SUN Man-li. Deterioration of earthen sites and consolidation with PS material along silk road of China[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1047–1054. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.05.022
[3] ARNOLD A. Rising damp and saline minerals[C]// Proceedings University of Louisville. Louisville, 1982.
[4] STEIGER M. Distribution of salt mixtures in a sandstone monument: sources, transport and crystallization properties [C]// Protection and conservation of European Cultural Heritage Research Report. Italy, 1996.
[5] STEIGER M, BEHLEN A, NEUMANN H. Sea salt in historic buildings: deposition, transport and accumulation [C]// Technical Chamber of Greece. Athens, 1997.
[6] 谌文武, 苏娜, 杨光. 风场对半湿润山脊土遗址掏蚀量的影响[J]. 岩土工程学报, 2016, 38(2): 305–310. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16447.shtml CHEN Wen-wu, SU Na, YANG Guang. Effect of wind field on sapping quantity of earthen architecture ruins along ridge of semi-humid areas[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 305–310. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16447.shtml
[7] 张明泉, 马可婧, 刘灿, 等. 不同掏蚀深度下古城墙的稳定性数值分析[J]. 地震工程学报, 2013, 35(1): 133–138. doi: 10.3969/j.issn.1000-0844.2013.01.0133 ZHANG Ming-quan, MA Ke-jing, LIU Can, et al. Analysis and numerical calculations of stability on ancient city wall under various sapping depths[J]. China Earthquake Engineering Journal, 2013, 35(1): 133–138. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0133
[8] 崔凯, 谌文武, 韩琳, 等. 干旱区土遗址掏蚀区土盐渍劣化与风蚀损耗效应[J]. 岩土工程学报, 2011, 33(9): 1412–1418. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710005.htm CUI Kai, CHEN Wen-wu, HAN Lin, et al. Effects of salinized deterioration and aeolian ullage on soils in undercutting area of earthern ruins in arid region[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1412–1418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710005.htm
[9] 崔凯, 关喜鹏, 谌文武, 等. 干旱区土遗址掏蚀区土盐渍劣化与风蚀损耗效应(Ⅱ)[J]. 岩土工程学报, 2017, 39(10): 1777–1784. doi: 10.11779/CJGE201710004 CUI Kai, GUAN Xi-peng, CHEN Wen-wu, et al. Effects of salinized deterioration and aeolian ullage on soils in undercutting areas of earthern ruins in arid regions(Ⅱ)[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1777–1784. (in Chinese) doi: 10.11779/CJGE201710004
[10] 高向阳. 土力学[M]. 北京: 北京大学出版社, 2010. GAO Xiang-yang. Soil Mechanics[M]. Beijing: Peking University Press, 2010. (in Chinese)
[11] ZHAO G, REN K B, MA Q W. Research on collapse failure process and mechanism of earthen sites under the action of capillary water[J]. Applied Mechanics and Materials, 2013, 438/439: 1226–1231. doi: 10.4028/www.scientific.net/AMM.438-439.1226
[12] LU N, WILLIAM J L. 非饱和土力学[M]. 北京: 高等教育出版社, 2012. LU N, WILLIAM J L. Mechanics of Unsaturated Soils[M]. Beijing: Higher Education Press, 2012. (in Chinese)
[13] 姜彬, 韩洪德. 测定毛细管水强烈上升高度方法应用实例[J]. 煤炭工程, 2007(10): 59–60. JIANG Bin, HAN Hong-de. Application examples of detemining height of capillary water[J]. Coal Engineering, 2007 (10): 59–60. (in Chinese)
[14] 刘亚磊, 梁杏, 朱常坤, 等. 采用土壤孔隙表面分形维数预测土壤水分特征曲线[J]. 水文地质工程地质, 2014, 41(3): 125–130. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403025.htm LIU Ya-lei, LIANG Xing, ZHU Chang-kun, et al. Prediction of soil water retention curve by surface fractal dimensions[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 125–130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403025.htm
[15] 高大钊, 袁聚云. 土质学与土力学[M]. 北京: 人民交通出版社, 2001. GAO Da-zhao, YUAN Ju-yun. Soil Properties and Soil Mechanics[M]. Beijing: China Communication Press, 2001. (in Chinese).
[16] 王松, 梁建国, 曾小婧. 用吸水法评估砖孔结构的试验研究[J]. 武汉大学学报(工学版), 2015, 48(3): 383–386. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201503018.htm WANG Song, LIANG Jian-guo, ZENG Xiao-jing. Experimental study of evaluating pore structure of bricks with absorption method[J]. Engineering Journal of Wuhan University, 2015, 48(3): 383–386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201503018.htm
[17] RAMÍREZ-FLORES J C, BACHMANN J, MARMUR A. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise[J]. Journal of Hydrology, 2010, 382(1/2/3/4): 10–19.
[18] 王新友, 蒋正武, 高相东, 等. 混凝土中水分迁移机理与模型研究评述[J]. 建筑材料学报, 2002, 5(1): 66–71. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200201012.htm WANG Xin-you, JIANG Zheng-wu, GAO Xiang-dong, et al. Review on the mechanism and model of moisture transfer in concrete[J]. Journal of Building Materials, 2002, 5(1): 66–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200201012.htm
-
期刊类型引用(4)
1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 . 百度学术
3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 . 百度学术
4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 . 百度学术
其他类型引用(15)