Lower shakedown limits of layered road structures under moving harmonic loads
-
摘要: 为了研究移动简谐荷载作用下层状道路结构的安定性问题,先通过傅里叶变换方法和数值积分求得三维层状道路结构在时间–空间域内的动力响应,然后考虑饱和土层的有效应力场而不是总应力场,对现有的静力安定理论和安定极限求解方法进行改进,提出了有效安定极限的概念,并与考虑总应力的安定极限求解方法进行了对比分析。此外,针对饱和土层选取不同的有效内摩擦角,分别研究了荷载移动速度、荷载频率以及道路面层刚度对层状道路结构的有效安定极限和有效临界深度的影响规律。结果表明:有效安定极限与考虑总应力的安定极限求解方法得到的安定极限有明显差异;而且在荷载移动速度较大时,有效临界深度比考虑总应力的安定求解方法得到的临界深度更深。有效安定极限的求解方法更适用于包含饱和土层的层状道路结构设计和安全评估。Abstract: The shakedown limits of layered road structures subjected to a moving harmonic load are studied. The inverse Fourier transform and the numerical integration are used to obtain the dynamic responses of a three-dimensional layered road structure in the time and space domain. Considering the effective stress field of saturated subsoil instead of the total stress field, the existing static shakedown theorem and the solving method for the shakedown limits are improved, and the concept of the effective shakedown limit is proposed and compared with the solving method for the shakedown limits considering the total stress. In addition, different effective internal friction angles are selected for the saturated soil layer, and the influences of load-moving speed, load frequency and pavement stiffness on the effective shakedown limit and effective critical depth of the layered road structure are studied respectively. The results show that there is a significant difference between the effective shakedown limits and the shakedown limits obtained by the solving method for the shakedown limits considering the total stress. Moreover, the effective critical depth is deeper than that obtained by the solving method for the shakedown limits considering the total stress when the load-moving speed is relatively high. The proposed method for solving the effective shakedown limits is more suitable for the design and safety assessment of layered road structures containing saturated soil layers.
-
-
表 1 层状道路结构的物理力学参数
Table 1 Physical and mechanical parameters of layered road structures
道路结构 μ/(N·m-2) λ/(N·m-2) M/(N·m-2) α ϕ ρs/(kg·m-3) ρf/(kg·m-3) α∞ bp/(N·s2m-3) H/m c/kPa /kPa /(°) ′/(°) 道路面层 50.0×107 33.30×107 1.0×10-4 1.0×10-4 1.0×10-4 2.5×103 1.0×10-4 1.0×10-4 1.0×10-4 0.2 1000 — 30 — 道路基层 20.0×107 30.00×107 1.0×10-4 1.0×10-4 2.0×103 1.0×10-4 1.0×10-4 1.0×10-4 0.2 400 — 30 — 路基 1.0×107 2.33×107 2.4×108 9.7×10-1 4.0×10-1 2.0×103 1.0×103 1.0 2.0×108 5.0 20 16 10~40 12~48 路基 2.0×107 4.67×107 2.4×108 9.7×10-1 3.0×10-1 2.0×103 1.0×103 1.0 2.0×108 10.0 20 16 10~40 12~48 -
[1] ZHUANG Y, WANG K Y, LI H X. Shakedown solutions for ballasted track structure under multiple uniform loads[J]. Transportation Geotechnics, 2020, 22: 100298.
[2] 王娟, 余海岁. 道路安定理论的进展及其应用[J]. 岩土力学, 2014, 35(5): 1255–1262, 1268. doi: 10.16285/j.rsm.2014.05.026 WANG Juan, YU Hai-sui. Development and its application of shakedown theory for road pavements[J]. Rock and Soil Mechanics, 2014, 35(5): 1255–1262, 1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.026
[3] MELAN E. Der spannungsgudstand eines Henky-Mises schen kontinuums bei verlandicher belastung[J]. Sitzungberichte der Ak Wissenschaften Wie (Ser. 2A), 1938, 147: 73.
[4] KOITER W T. General theorems for elastic-plastic solids[M]// Progress in Solid Mechanics. Amsterdam: North-Holland Publishing Company, 1960.
[5] 王永刚, 钱建固. 移动荷载下三维半空间动力安定性下限分析[J]. 岩土力学, 2016, 37(增刊1): 570–576. doi: 10.16285/j.rsm.2016.S1.074 WANG Yong-gan, QIAN Jian-gu. Dynamic shakedown lower-bound analysis of three-dimensional half-space under moving load[J]. Rock and Soil Mechanics, 2016, 37(S1): 570–576. (in Chinese) doi: 10.16285/j.rsm.2016.S1.074
[6] SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, ASCE, 1984, 110(1): 1–14.
[7] SHIAU S H. Numerical Methods for Shakedown Analysis of Pavements Under Moving Surface Loads[D]. Newcastle: University of Newcastle, 2001.
[8] YU H S. Three-dimensional analytical solutions for shakedown of cohesive-frictional materials under moving surface loads[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 1951–1964.
[9] YU H S, WANG J. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797–3807.
[10] WANG J, YU H S. Shakedown analysis for design of flexible pavements under moving loads[J]. Road Materials and Pavement Design, 2013, 14(3): 703–722.
[11] WANG J, YU H S. Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 331–348.
[12] LIU S, WANG J, YU H S, et al. Shakedown solutions for pavements with materials following associated and non-associated plastic flow rules[J]. Computers and Geotechnics, 2016, 78: 218–226.
[13] QIAN J G, WANG Y G, LIN Z G, et al. Dynamic shakedown analysis of flexible pavement under traffic moving loading[J]. Procedia Engineering, 2016, 143: 1293–1300.
[14] QIAN J G, WANG Y G, WANG J, et al. The influence of traffic moving speed on shakedown limits of flexible pavements[J]. International Journal of Pavement Engineering, 2019, 20(2): 233–244.
[15] ZHUANG Y, WANG K Y. Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 296–300.
[16] ZHUANG Y, WANG K Y, LI H X, et al. Application of three-dimensional shakedown solutions in railway structure under multiple Hertz loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 328–338.
[17] LU Z, QIAN J G, ZHOU R Y. Shakedown analysis of flexible pavement on saturated subgrade under moving traffic loading[C]// Advances in Environmental Vibration and Transportation Geodynamics, 2020. Singapore.
[18] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482–1498.
[19] WANG J, YU H S. Residual stresses and shakedown in cohesive-frictional half-space under moving surface loads[J]. Geomechanics and Geoengineering, 2013, 8(1): 1–14.
[20] LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573–586.
[21] HALLONBORG U. Super ellipse as tyre-ground contact area[J]. Journal of Terramechanics, 1996, 33(3): 125–132.
[22] XU B, LU J F, WANG J H. Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics, 2008, 35(1): 1–10.
[23] 李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016. LI Guang-xin. Advanced Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. (in Chinese)
[24] ACHENBACH J D, THAU S A. Wave propagation in elastic solids[J]. Journal of Applied Mechanics, 1974, 41(2): 544.
[25] 周仁义, 钱建固, 黄茂松. 不平顺路面的车辆动载诱发饱和地基的动应力响应[J]. 振动与冲击, 2016, 35(11): 93-101, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm ZHOU Ren-yi, QIAN Jian-gu, HUANG Mao-song. Influences of vehicle dynamic load on dynamic stress in saturated poro-elastic ground[J]. Journal of Vibration and Shock, 2016, 35(11): 93–101, 122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
[26] 公路工程技术标准: JTG B01—2014[S]. 北京: 人民交通出版社, 2015. Technical Standard of Highway Engineering: JTG B01—2014[S]. Beijing: China Communications Press, 2015. (in Chinese)
-
期刊类型引用(1)
1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
其他类型引用(9)