• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

切向应力幅值对土与结构接触面切向变形的影响研究

冯大阔, 张建民

冯大阔, 张建民. 切向应力幅值对土与结构接触面切向变形的影响研究[J]. 岩土工程学报, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001
引用本文: 冯大阔, 张建民. 切向应力幅值对土与结构接触面切向变形的影响研究[J]. 岩土工程学报, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001
FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001
Citation: FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001

切向应力幅值对土与结构接触面切向变形的影响研究  English Version

基金项目: 

国家自然科学基金面上项目 52079126

中原青年拔尖人才支持项目 ZYQR201912156

详细信息
    作者简介:

    冯大阔(1984—),男,博士,正高级工程师,主要从事土与结构相互作用、绿色建造、装配式建造等方面的研究。E-mail: tpada@qq.com/tpada@qq.com

  • 中图分类号: TU411

Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface

  • 摘要: 运用80 t大型三维多功能土工试验机,进行了应力控制往返圆形剪切路径下粗粒土与结构接触面三维直剪试验,分析了切向应力幅值对接触面切向位移、非共轴角和剪切柔度等切向变形特性的影响规律。试验结果表明:应力控制往返圆形路径下,接触面产生了明显的x向和y向位移及其偏移、非共轴角、剪切柔度和剪切耦合效应,呈现出显著的三维特性。切向应力幅值达到临界应力幅值时,接触面切向位移幅值及剪切柔度峰值随循环剪切基本保持不变;剪切柔度初始峰值与非共轴角稳定值存在对立统一关系。切向应力幅值主要影响接触面力学特性参数数值,对其之间关系形式影响很小。切向应力幅值越大,接触面x向和y向位移幅值越大,向负向偏移程度越大;非共轴角稳定值越小,剪切柔度峰值越大。非共轴角稳定值、剪切柔度初始峰值与切向应力幅值间存在良好的关系,可用建议的计算公式进行描述,为接触面三维力学特性的本构建模奠定了基础。
    Abstract: A series of interface tests between gravel and structure are conducted in stress-controlled two-way circular cyclic shear path by using the large-scale direct-shear apparatus, and the effects of shear stress amplitude on the tangential deformation performances of the interface, including tangential displacement, non-coaxial angle and shear flexibility, are addressed. The test results show that the interface presents distinct 3D behavior subjected to two-way circular cycling of shear stress, such as distinct tangential displacements in the x and y directions and their migration, non-coaxial angle, shear flexibility and shear coupling effect. The tangential displacement amplitude and the peak shear flexibility almost remain invariable with cyclic shearing when the shear stress amplitude reaches the critical stress amplitude. The unity of opposites is discovered between the stabilized non-coaxial angle and the initial peak shear flexibility of the interface. The shear stress amplitude primarily impacts the magnitudes of the performance parameters of the interface, instead of their relationship patterns. Increasing the shear stress amplitude results in magnified tangential displacement amplitudes in the x and y directions, enlarged migration of the tangential displacements towards the negative directions, increased peak shear flexibility and decreased stabilized non-coaxial angle. The stabilized non-coaxial angle and the initial peak shear flexibility have a close relationship with the shear stress amplitude, and can be described using the proposed formulas, which may provide a sound basis for the 3D constitutive modeling of the soil-structure interface.
  • 图  1   应力控制往返圆形剪切路径示意图

    Figure  1.   Schematic diagram of stress-controlled two-way circular cyclic shear path of interface

    图  2   应力控制往返圆形路径接触面三维试验结果(τm=230 kPa)

    Figure  2.   3D test results of gravel-structure interface subjected to two-way circular cycling of shear stress (τm=230 kPa)

    图  3   应力控制单向往返路径接触面二维试验结果(τm=230 kPa)

    Figure  3.   2D test results of interface subjected to two-way beeline cycling of shear stress (τm=230 kPa)

    图  4   不同切向应力幅值下接触面x向位移时程

    Figure  4.   Cyclic histories of tangential displacements in x direction of interface at different shear stress amplitudes

    图  5   不同切向应力幅值下接触面切向位移关系曲线

    Figure  5.   Tangential displacement relationship in x and y directions of interface at different shear stress amplitudes

    图  6   不同切向应力幅值下接触面切向应力位移关系曲线

    Figure  6.   Shear stress-displacement hysteretic responses of interface at different shear stress amplitudes

    图  7   接触面单位应力切向位移增量分布图(τm=230 kPa)

    Figure  7.   Distribution of shear displacement vectors of interface

    图  8   应力控制往返圆形路径接触面非共轴角时程(τm=230 kPa)

    Figure  8.   Cyclic histories of non-coaxial angles of interface (τm=230 kPa)

    图  9   不同切向应力幅值接触面单位应力切向位移增量分布图

    Figure  9.   Distribution of shear displacement vectors of interface at different shear stress amplitudes

    图  10   不同切向应力幅值下接触面非共轴角时程

    Figure  10.   Cyclic histories of non-coaxial angles of interface at different shear stress amplitudes

    图  11   接触面非共轴角稳定值与切向应力幅值关系

    Figure  11.   Relationship of stabilized non-coaxial angle against shear stress amplitude of interface

    图  12   不同切向应力幅值下接触面剪切柔度时程

    Figure  12.   Cyclic histories of shear flexibility of interface at different shear stress amplitudes

    图  13   接触面剪切柔度初始峰值与切向应力幅值关系

    Figure  13.   Relationship of initial peak shear flexibility against shear stress amplitude of interface

    图  14   接触面剪切柔度初始峰值与非共轴角关系

    Figure  14.   Relationship of initial peak shear flexibility against non- coaxial angle of interface

  • [1]

    POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339–353.

    [2]

    UESUGI M, KISHIDA H. Influential factors of friction between steel and dry sands[J]. Soils and Foundations, 1986, 26(2): 33–46.

    [3]

    TSUBAKIHARA Y, KISHIDA H. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses[J]. Soils and Foundations, 1993, 33(2): 1–13.

    [4]

    FAKHARIAN K. Three-dimensional Monotonic and Cyclic Behavior of Sand-Steel Interfaces: Testing and Modeling[D]. Ottawa: University of Ottawa, 1996.

    [5] 胡黎明, 濮家骝. 土与结构物接触面物理力学特性试验研究[J]. 岩土工程学报, 2001, 23(4): 431–435. doi: 10.3321/j.issn:1000-4548.2001.04.010

    HU Li-ming, PU Jia-liu. Experimental study on mechanical characteristics of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 431–435. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.010

    [6] 张嘎, 张建民. 循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J]. 岩土工程学报, 2004, 26(2): 254–258. doi: 10.3321/j.issn:1000-4548.2004.02.020

    ZHANG Ga, ZHANG Jian-min. Experimental study on cyclic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 254–258. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.02.020

    [7] 冯大阔, 张嘎, 张建民, 等. 常刚度条件下粗粒土与结构接触面三维力学特性试验研究[J]. 岩土工程学报, 2009, 31(10): 1571–1577. doi: 10.3321/j.issn:1000-4548.2009.10.015

    FENG Da-kuo, ZHANG Ga, ZHANG Jian-min, et al. Experimental study on 3D cyclic behaviors of soil-structure interface under constant normal stiffness condition[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1571–1577. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.015

    [8]

    FARHADI B, LASHKARI A. Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces[J]. Soils and Foundations, 2017, 57(1): 111–125.

    [9]

    MARTINEZ A, FROST J D. The influence of surface roughness form on the strength of sand–structure interfaces[J]. Géotechnique Letters, 2017, 7(1): 104–111. doi: 10.1680/jgele.16.00169

    [10]

    FENG D K, ZHANG J M, HOU W J. Three-dimensional direct-shear behaviors of a gravel-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018095.

    [11] 杨忠平, 蒋源文, 李诗琪, 等. 土石混合体—基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947–1954. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18332.shtml

    YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, et al. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947–1954. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18332.shtml

    [12]

    LI Y H, LV M F, GUO Y C, et al. Effects of the soil water content and relative roughness on the shear strength of silt and steel plate interface[J]. Measurement, 2021, 174: 109003. doi: 10.1016/j.measurement.2021.109003

    [13]

    CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657–1673. doi: 10.1061/JSFEAQ.0001713

    [14] 殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14–22. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9769.shtml

    YIN Zong-ze, ZHU Hong, XU Guo-hua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 14–22. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9769.shtml

    [15] 王伟, 卢廷浩, 宰金珉, 等. 土与混凝土接触面反向剪切单剪试验[J]. 岩土力, 2009, 30(5): 1303–1306. doi: 10.3969/j.issn.1000-7598.2009.05.019

    WANG Wei, LU Ting-hao, ZAI Jin-min, et al. Negative shear test on soil-concrete interface using simple shear apparatus[J]. Rock and Soil Mechanics, 2009, 30(5): 1303–1306. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.05.019

    [16] 陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34(12): 3491–3499, 3526. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    LU Yong, ZHOU Guo-qing, XIA Hong-chun, et al. Effect of shape scale on characteristics of coarse grained soil-structural interface under medium and high pressures[J]. Rock and Soil Mechanics, 2013, 34(12): 3491–3499, 3526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    [17] 朱俊高, 汪淼, 黄维, 等. 钢-土接触面位移与强度特性直剪试验[J]. 河海大学学报(自然科学版), 2021, 49(3): 265–271. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202103010.htm

    ZHU Jun-gao, WANG Miao, HUANG Wei, et al. Experimental study on displacement and strength behavior of interface between soil and steel using direct shear test[J]. Journal of Hohai University (Natural Sciences), 2021, 49(3): 265–271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202103010.htm

    [18]

    DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and Foundations, 2006, 46(1): 15–28.

    [19]

    FENG D K, ZHANG J M, HOU W J. Role of normal stiffness in 3D cyclic behavior of gravel–steel interface from large-scale direct shear tests[J]. Acta Geotechnica, 2021, 16(1): 151–165.

    [20]

    DEJONG J T, RANDOLPH M F, WHITE D J. Interface load transfer degradation during cyclic loading: a microscale investigation[J]. Soils and Foundations, 2003, 43(4): 81–93.

    [21] 冯大阔, 侯文峻, 张建民. 切向应力控制条件下粗粒土与结构接触面三维循环特性研究[J]. 岩石力学与工程学报, 2011, 30(12): 2574–2582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112024.htm

    FENG Da-kuo, HOU Wen-jun, ZHANG Jian-min. Test investigations on 3d stress-controlled cyclic behavior of gravel-structure interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2574–2582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112024.htm

    [22] 张建民, 侯文峻, 张嘎, 等. 大型三维土与结构接触面试验机的研制与应用[J]. 岩土工程学报, 2008, 30(6): 889–894. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12887.shtml

    ZHANG Jian-min, HOU Wen-jun, ZHANG Ga, et al. Development and application of 3D soil-structure interface test apparatus[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 889–894. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12887.shtml

  • 期刊类型引用(4)

    1. 郑晓彦,王竑,朱斌,高雪,高玉良,张晨阳,车文越,马柯. 新型矿山陡坡生态修复基材抗裂抗冲刷试验研究. 矿产勘查. 2024(10): 1947-1956 . 百度学术
    2. 丁万涛,郭文静,曹凯,李振宇. 泥水盾构抗海水劣化泥浆流变性能及成膜机制分析. 岩土工程学报. 2024(12): 2484-2491 . 本站查看
    3. 李辉,刘泓志,王诗雨,王云芝,闵凡路. 卵砾石地层泥水盾构不同性质泥浆成膜试验研究. 现代隧道技术. 2023(03): 175-181 . 百度学术
    4. 曾铃,余慧聪,高乾丰,查焕奕,祖宇轩,卞汉兵. 阿拉伯树胶改性预崩解炭质泥岩路用性能及改性机制. 中国公路学报. 2023(10): 42-54 . 百度学术

    其他类型引用(2)

图(14)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  27
  • PDF下载量:  29
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-08-27
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回