• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

液化土中管道随机地震响应分析与可靠度评价研究

徐斌, 陈柯好, 王星亮, 庞锐

徐斌, 陈柯好, 王星亮, 庞锐. 液化土中管道随机地震响应分析与可靠度评价研究[J]. 岩土工程学报, 2024, 46(1): 81-89. DOI: 10.11779/CJGE20221096
引用本文: 徐斌, 陈柯好, 王星亮, 庞锐. 液化土中管道随机地震响应分析与可靠度评价研究[J]. 岩土工程学报, 2024, 46(1): 81-89. DOI: 10.11779/CJGE20221096
XU Bin, CHEN Kehao, WANG Xingliang, PANG Rui. Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 81-89. DOI: 10.11779/CJGE20221096
Citation: XU Bin, CHEN Kehao, WANG Xingliang, PANG Rui. Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 81-89. DOI: 10.11779/CJGE20221096

液化土中管道随机地震响应分析与可靠度评价研究  English Version

基金项目: 

国家自然科学基金项目 52279096

国家自然科学基金项目 52279125

国家自然科学基金项目 52009017

详细信息
    作者简介:

    徐斌(1981—),男,博士,教授,博士生导师,主要从事土动力学与高土石坝抗震、粗粒土力学特性等方面的研究工作。E-mail: xubin@dlut.edu.cn

    通讯作者:

    庞锐, E-mail: pangrui@dlut.edu.cn

  • 中图分类号: TU435

Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil

  • 摘要: 地震作用下饱和砂土液化会导致埋地管道上浮,引起系统功能失效。为探究液化场地中埋地管道的地震响应和可靠度水平,充分考虑地震动的随机性和非平稳性,提出了基于概率密度演化法和等价极值分布的概率分析方法,从超孔隙水压力、加速度和结构位移变形三方面对埋地管道进行随机动力分析和可靠度评价。结果表明:地震动的随机性对埋地管道的动力响应有显著影响,传统的确定性分析方法可能会低估管道的地震响应,提出的分析方法能较全面地研究管道的上浮机理和可靠度水平;地震作用下,孔隙水压力上升,导致土壤有效应力下降,进而发生土壤液化是管道上浮的主要原因;两侧土壤向管道底部的挤压和指向管底的渗流压力进一步加剧了管道的抬升。最后,基于成灾机理研究了U型碎石排水对埋地管道的减灾效果和机理。提出的随机概率分析方法,可以对管道的上浮机理和可靠度做出较为准确的分析。
    Abstract: The liquefaction of saturated sand under the action of earthquakes can cause the buried pipeline to float up and the system failure. To investigate the seismic response and reliability level of buried pipelines in liquefaction sites, a probabilistic analysis method based on the probability density evolution method and equivalent extreme value distribution is proposed to fully consider the randomness and non-stationarity of ground shaking. According to the excess pore water pressure, acceleration and displacement of structures, the random dynamic analysis and reliability assessment of the buried pipeline are carried out. The results show that the randomness of ground motion has a significant effect on the dynamic response of buried pipelines, and the traditional deterministic analysis methods may underestimate the seismic response of pipelines. The proposed method can be use to comprehensively study the floating mechanism and reliability level of buried pipelines. Under the action of earthquakes, the pore water pressure increases, which leads to a decrease in the effective soil stress, and then liquefaction of the soil occurs, causing the pipe to float up. The compression of soil at both sides towards the bottom of the pipe and the seepage pressure towards the bottom of the pipe further aggravate the uplift of the pipe. Finally, the disaster mitigation effect and mechanism of U-shaped gravel drainage on buried pipelines are studied based on disaster mechanism. The proposed stochastic probability analysis method can be employed to accurately evaluate the buoyancy mechanism and reliability of pipelines.
  • 图  1   样本的均值、标准差和反应谱与目标值的对比

    Figure  1.   Comparison between mean, standard deviation and response spectrum and target values

    图  2   有限元网格及观测节点位置

    Figure  2.   Finite element mesh and position of observation nodes

    图  3   U型碎石排水措施

    Figure  3.   Drainage measures for U-shaped gravel

    图  4   超孔隙水压力分布

    Figure  4.   Distribution of excess pore water pressure

    图  5   特征节点超孔压时程

    Figure  5.   Time histories of excess pore pressure at characteristic nodes

    图  6   t=12.5 s和t=30 s时刻孔压比分布

    Figure  6.   Distribution of pore pressure ratio at t=12.5 and 30 s

    图  7   特征节点加速度时程和超孔压

    Figure  7.   Time histories of acceleration and excess pore water pressure at feature nodes

    图  8   上浮位移的均值和标准差

    Figure  8.   Time histories of mean and standard deviation of upward displacement

    图  9   管道底部的加速度、超孔压和上浮位移时程

    Figure  9.   Time histories of acceleration, excess pore water pressure and buoyancy at bottom of pipe

    图  10   位移向量示意图

    Figure  10.   Schematic diagram of displacement vector

    图  11   上浮位移的概率密度信息

    Figure  11.   Probability densities of upward displacement

    图  12   上浮位移的等价极值概率信息

    Figure  12.   Equivalent extremum probability information of upward displacementt

    图  13   U型碎石排水震后超孔隙水压力分布

    Figure  13.   Distribution of excess pore water pressure at post- earthquake time of U-shaped gravel drainage measures

    图  14   管道底部平均超孔压时程

    Figure  14.   Comparison of time history of average excess pore water pressure at bottom of pipe

    图  15   上浮位移时程

    Figure  15.   Comparison of time history of mean upward displacement

    图  16   累积分布函数

    Figure  16.   Cumulative distribution function

    表  1   砂土模型参数

    Table  1   Parameters of sand

    G0 K0 Mg Mf αf αg
    95.8 192.5 1.15 1.03 0.45 0.45
    Hu0 Hl0 β0 β1 γDM γu
    800 600 4.2 0.2 0 2
    下载: 导出CSV

    表  2   排水碎石模型参数

    Table  2   Parameters of drainage crushed stone

    G0 K0 Mg Mf αf αg
    217 500 1.32 1.30 0.45 0.45
    Hu0 Hl0 β0 β1 γDM γDM
    4000 750 4.2 0.2 4 2
    下载: 导出CSV

    表  3   理想弹塑性接触面参数

    Table  3   Parameters of ideal elastic-plastic contact surface

    Kn/MPa Ks/MPa φ/(°) c t
    1000 10 23 0 0
    下载: 导出CSV

    表  4   弹性混凝土参数

    Table  4   Parameters of elastic concrete

    E/MPa μ ρ/(kg·m-3
    25500 0.167 23
    下载: 导出CSV

    表  5   不同破坏等级的可靠度

    Table  5   Reliabilities of different failure grades

    性能水平 破坏等级
    轻度破坏 中度破坏 重度破坏
    上浮位移/m 0.045 0.075 0.011
    可靠度/% 88.22 56.35 16.23
    下载: 导出CSV
  • [1] CHIAN S C, TOKIMATSU K, MADABHUSHI S P G. Soil liquefaction-induced uplift of underground structures: physical and numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(10): 04014057.
    [2]

    WANG L R L, YEH Y H. A refined seismic analysis and design of buried pipeline for fault movement[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(1): 75-96.

    [3] 卢红前, 汉会, 朱永强, 等. 液化场地处循环水系统埋地管道的地基处理[J]. 武汉大学学报(工学版), 2011, 44(增刊1): 205-209.

    LU Hongqian, HAN Hui, ZHU Yongqiang, et al. Ground treatment of buried conduit for circulating water system in liquefied soil[J]. Engineering Journal of Wuhan University, 2011, 44(S1): 205-209. (in Chinese)

    [4]

    SAEEDZADEH R, HATAF N. Uplift response of buried pipelines in saturated sand deposit under earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1378-1384. doi: 10.1016/j.soildyn.2011.05.013

    [5] 邹德高, 孔宪京. 液化土中管线抗上浮排水措施数值分析[J]. 大连理工大学学报, 2010, 50(3): 379-385.

    ZOU Degao, KONG Xianjing. Numerical analysis of mitigation methods against pipeline up-lifting in liquefiable soil[J]. Journal of Dalian University of Technology, 2010, 50(3): 379-385. (in Chinese)

    [6]

    MADABHUSHI S S C, MADABHUSHI S P G. Finite element analysis of floatation of rectangular tunnels following earthquake induced liquefaction[J]. Indian Geotechnical Journal, 2015, 45(3): 233-242. doi: 10.1007/s40098-014-0133-3

    [7] 屈铁军, 王前信. 地下管线在空间随机分布的地震作用下的反应[J]. 工程力学, 2003, 20(3): 120-124.

    QU Tiejun, WANG Qianxin. Seismic response of underground pipelines to ground motion with spatial randomness[J]. Engineering Mechanics, 2003, 20(3): 120-124. (in Chinese)

    [8]

    PANG R, ZHOU Y, CHEN G H, et al. Stochastic mainshock–aftershock simulation and its applications in dynamic reliability of structural systems via DPIM[J]. Journal of Engineering Mechanics, 2023, 149(1): 04022096. doi: 10.1061/(ASCE)EM.1943-7889.0002176

    [9] 刘汉龙. 随机地震作用下地基及土石坝永久变形分析[J]. 岩土工程学报, 1996, 18(3): 19-27. http://www.cgejournal.com/cn/article/id/9020

    LIU Hanlong. Permanent deformation of foundation and embankement dam due to stochastic seismic excitation[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 19-27. (in Chinese) http://www.cgejournal.com/cn/article/id/9020

    [10]

    ZHOU Y, JING M Y, PANG R, et al. A novel method for the dynamic reliability analysis of slopes considering dependent random parameters via the direct probability integral method[J]. Structures, 2022, 43: 1732-1749. doi: 10.1016/j.istruc.2022.07.074

    [11]

    LI J, CHEN J B, FAN W L. The equivalent extreme-value event and evaluation of the structural system reliability[J]. Structural Safety, 2007, 29(2): 112-131. doi: 10.1016/j.strusafe.2006.03.002

    [12]

    PANG R, XU B, ZHOU Y, et al. Seismic time-history response and system reliability analysis of slopes considering uncertainty of multi-parameters and earthquake excitations[J]. Computers and Geotechnics, 2021, 136: 104245. doi: 10.1016/j.compgeo.2021.104245

    [13] 孔宪京, 庞锐, 徐斌, 等. 考虑堆石料软化的坝坡随机地震动力稳定分析[J]. 岩土工程学报, 2019, 41(3): 414-421. doi: 10.11779/CJGE201903002

    KONG Xianjing, PANG Rui, XU Bin, et al. Stochastic seismic stability analysis of dam slopes considering softening of rockfills[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 414-421. (in Chinese) doi: 10.11779/CJGE201903002

    [14] 李杰, 陈建兵. 随机结构动力反应分析的概率密度演化方法[J]. 力学学报, 2003, 35(4): 437-442.

    LI Jie, CHEN Jianbing. Probability density evolution method for analysis of stochastic structural dynamic response[J]. Acta Mechanica Sinica, 2003, 35(4): 437-442. (in Chinese)

    [15] 梁建文. 非平稳地震动过程模拟方法(Ⅰ)[J]. 地震学报, 2005, 27(2): 213-224.

    LIANG Jianwen. Simulation of non stationary ground motion processes (Ⅰ)[J]. Acta Seismologica Sinica, 2005, 27(2): 213-224. (in Chinese)

    [16]

    DEODATIS G. Non-stationary stochastic vector processes: seismic ground motion applications[J]. Probabilistic Engineering Mechanics, 1996, 11(3): 149-167. doi: 10.1016/0266-8920(96)00007-0

    [17]

    PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modelling of soil behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190. doi: 10.1002/nag.1610140302

    [18]

    GHOSH B, MADABHUSHI S P G. A numerical investigation into effects of single and multiple frequency earthquake motions[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(8): 691-704. doi: 10.1016/j.soildyn.2003.07.004

    [19]

    DEWOOLKAR M M, KO H Y, PAK R Y S. Seismic behavior of cantilever retaining walls with liquefiable backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 424-435. doi: 10.1061/(ASCE)1090-0241(2001)127:5(424)

    [20]

    ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49: 111-122. doi: 10.1016/j.compgeo.2012.10.010

    [21] 李培振, 任红梅, 吕西林, 等. 液化地基自由场振动台模型试验研究[J]. 地震工程与工程振动, 2008, 28(2): 171-178.

    LI Peizhen, REN Hongmei, LÜ Xilin, et al. Shaking table test on free field considering soil liquefaction[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(2): 171-178. (in Chinese)

图(16)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回