Experimental study on solidification of silt through urease-producing strains induced by ultraviolet mutagenesis
-
摘要: 为提高微生物诱导碳酸钙沉淀(MICP)技术的固化效果,采用紫外诱变技术对产脲酶菌株进行改良,筛选出优良菌株。随后结合先拌和菌液后滴注胶结液(尿素和氯化钙)的方式,运用改良后菌株来固化粉土。通过无侧限抗压强度试验、碳酸钙含量测定和微观试验分析,来对比诱变前后菌株固化粉土的效果。结果表明:紫外诱变技术可以有效改良产脲酶菌株的性能,使菌株的脲酶活性、矿化生成的碳酸钙含量得到提高;使用紫外诱变后菌株来固化粉土,可显著提高土体的无侧限抗压强度。该研究从源头来选育优良菌株,有效提高了MICP技术的固化效果。Abstract: To improve the solidification effects of the microbially induced calcium carbonate precipitation (MICP) technology, the urease-producing strains are optimized by the ultraviolet (UV) mutagenesis. Subsequently, the modified bacterial strains are used to solidify silt by premixing bacterial with soil first and then injecting cementation solution (urea and calcium chloride) into soil. The unconfined compressive strength tests, calcium carbonate content determination and microscopic test analysis are conducted to comparatively study the curing effects of the strains before and after the UV mutagenesis. The results show that the UV mutagenesis technology can effectively improve the performance of the urease-producing bacterial strains, and increase the urease activity and the content of calcium carbonate produced by mineralization. The use of UV-induced bacterial strains to solidify silt can significantly improve the unconfined compressive strength of the soil. This study selects the excellent bacterial strains from the source and effectively improves the curing effects of the MICP technology.
-
-
表 1 粉土的粒径分布
Table 1 Grain-size distribution of silt
粒径/mm < 2 < 1 < 0.5 < 0.25 < 0.1 < 0.074 颗粒质量百分数/% 100 99.8 98.6 97 81 60.4 表 2 紫外诱变脲酶菌株加固粉土试验方案
Table 2 Test schemes for reinforcement of silt by UV mutagenic urease strains
试验序号 试验方案 胶结液滴注
轮数试验编号 1 未诱变菌株N-0 1 N-0-1 3 N-0-3 5 N-0-5 7 N-0-7 2 诱变后菌株M-25 1 M-25-1 3 M-25-3 5 M-25-5 7 M-25-7 注:滴注8轮时试样滴注处开始堵塞,胶结液已无法滴注。 表 3 诱变致死率
Table 3 Mortality rates of mutation
编号 菌落数量/个 致死率/% N-0 620 0 M-15 271 56 M-20 166 73 M-25 93 85 M-30 64 90 M-35 50 92 -
[1] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
[2] XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
[3] CHU J, STABNIKOV V, IVANOV V, et al. Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
[4] XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
[5] XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573
[6] MA G L, HE X A, JIANG X A, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2020, 58(7): 969-981.
[7] 黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306, 3316. doi: 10.16285/j.rsm.2020.0151 HUANG Tao, FANG Xiangwei, ZHANG Wei, et al. Experimental study on solidified loess by microbes and reactive magnesium oxide[J]. Rock and Soil Mechanics, 2020, 41(10): 3300-3306, 3316. (in Chinese) doi: 10.16285/j.rsm.2020.0151
[8] 马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. doi: 10.11779/CJGE202102009 MA Guoliang, HE Xiang, LU Huaming, et al. Strength of biocemented coarse sand with Kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. (in Chinese) doi: 10.11779/CJGE202102009
[9] 郑俊杰, 宋杨, 吴超传, 等. 玄武岩纤维加筋微生物固化砂力学特性试验[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201912013.htm ZHENG Junjie, SONG Yang, WU Chaochuan, et al. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201912013.htm
[10] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008 HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
[11] 李昊, 唐朝生, 尹黎阳, 等. MICP-FR协同作用改善钙质砂的力学性能及抗侵蚀试验研究[J]. 岩土工程学报, 2021, 43(10): 1941-1949. doi: 10.11779/CJGE202110021 LI Hao, TANG Chaosheng, YIN Liyang, et al. Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1941-1949. (in Chinese) doi: 10.11779/CJGE202110021
[12] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. doi: 10.11779/CJGE201904010 XIE Yuehan, TANG Chaosheng, YIN Liyang, et al. Mechanical behavior of microbial-induced calcite precipitation(MICP)- treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) doi: 10.11779/CJGE201904010
[13] 肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. doi: 10.11779/CJGE202103014 XIAO Peng, LIU Hanlong, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) doi: 10.11779/CJGE202103014
[14] LI H, SONG Y X, LI Q J, et al. Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease[J]. Bioresource Technology, 2014, 167: 269-275.
[15] 杜康, 李广悦, 丁德馨, 等. 产脲酶芽胞杆菌的微波诱变育种[J]. 微生物学杂志, 2016, 36(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWX201603005.htm DU Kang, LI Guangyue, DING Dexin, et al. Microwave mutation breeding for urease-producing sporoscarcina pasteurii[J]. Journal of Microbiology, 2016, 36(3): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSWX201603005.htm
[16] LIMA P S S, LUCCHESE A M, ARAÚJO-FILHO H G, et al. Inclusion of terpenes in cyclodextrins: preparation, characterization and pharmacological approaches[J]. Carbohydrate Polymers, 2016, 151: 965-987.
[17] 王传旭, 赵爱华, 于慧瑛, 等. 淀粉酶高产菌株的筛选、紫外诱变及产酶条件优化[J]. 微生物学通报, 2022, 49(5): 1759-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202205018.htm WANG Chuanxu, ZHAO Aihua, YU Huiying, et al. Screening, UV mutagenesis, and production optimization of a strain with high yield of amylase[J]. Microbiology China, 2022, 49(5): 1759-1773. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202205018.htm
[18] 赵志峰, 曹晨, 刘鹏. 微生物矿化加固粉土的试验研究[J]. 中国矿业大学学报, 2021, 50(5): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105012.htm ZHAO Zhifeng, CAO Chen, LIU Peng. Experimental study of reinforcing silt based on mineralization of microorganism[J]. Journal of China University of Mining & Technology, 2021, 50(5): 955-962. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105012.htm
[19] 刘堂浩, 李由然, 张梁, 等. 高通量筛选高产酪氨酸的酿酒酵母菌株[J]. 生物工程学报, 2021, 37(9): 3348-3360. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU202109031.htm LIU Tanghao, LI Youran, ZHANG Liang, et al. High-throughput screening of Saccharomyces cerevisiae efficiently producing tyrosine[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3348-3360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU202109031.htm
[20] 邵睿, 张倩, 宋炜钰, 等. 紫外诱变法选育酒酒球菌乙醇胁迫耐受菌株及其发酵性能研究[J]. 中国酿造, 2022, 41(7): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ202207013.htm SHAO Rui, ZHANG Qian, SONG Weiyu, et al. Breeding of Oenococcus oeni strain with ethanol tolerance by UV mutagenesis and its fermentation performance[J]. China Brewing, 2022, 41(7): 71-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ202207013.htm
[21] 董志红. 发酵法生产透明质酸的诱变育种及分子量可控工艺研究[D]. 杭州: 浙江工业大学, 2017. DONG Zhihong. Study on Strain Breeding and Process for Production of Hyaluronic Acid with Controllable Molecular Weight[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)
[22] 马振贵, 马伟超, 蒲建平, 等. 马铃薯渣高效降解菌的紫外诱变选育及发酵试验[J]. 中国酿造, 2011, 30(1): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ201101040.htm MA Zhengui, MA Weichao, PU Jianping, et al. UV mutagenesis in efficient degradation strains of potato pulp and fermentation[J]. China Brewing, 2011, 30(1): 123-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ201101040.htm
[23] 季旭, 赵帅东, 周滟晴, 等. 透明质酸产生菌的紫外诱变及发酵工艺的优化[J]. 食品与发酵工业, 2021, 47(11): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202111025.htm JI Xu, ZHAO Shuaidong, ZHOU Yanqing, et al. UV mutagenesis and fermentation optimization of hyaluronic acid-producing strain[J]. Food and Fermentation Industries, 2021, 47(11): 158-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202111025.htm
[24] WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
[25] 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国建筑工业出版社, 2011. Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Construction Industry Press, 2011. (in Chinese)
[26] 朱效博, 赵志峰. 胶结液注入轮数和体积对微生物加固粉土的影响[J]. 防灾减灾工程学报, 2021, 41(3): 485-490, 548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202103011.htm ZHU Xiaobo, ZHAO Zhifeng. Influence of number of rounds and volumes of cementation solution injection on improving silt by microbial method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 485-490, 548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202103011.htm
[27] 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. doi: 10.11779/CJGE201806010 PENG Jie, FENG Qingpeng, SUN Yicheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) doi: 10.11779/CJGE201806010
[28] 申泰铭, 解庆林, 李艳红, 等. 物理诱变育种技术在环境工程中的发展及运用[J]. 环境科学与管理, 2008, 33(6): 53-55, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200806017.htm SHEN Taiming, XIE Qinglin, LI Yanhong, et al. Application of physical mutagenesis in environmental engineering[J]. Environmental Science and Management, 2008, 33(6): 53-55, 68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200806017.htm
[29] 夏金兰, 宁进军, 陈程浩, 等. 耐高温小球藻紫外诱变育种及其耐高温性质研究[J]. 中南大学学报(自然科学版), 2013, 44(3): 867-873. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303004.htm XIA Jinlan, NING Jinjun, CHEN Chenghao, et al. UV mutagenesis breeding for high temperature resisting Chlorella and its properties of thermotolerance[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 867-873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303004.htm
[30] 肖瑶, 邓华锋, 李建林, 等. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202011.htm XIAO Yao, DENG Huafeng, LI Jianlin, et al. Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment[J]. Rock and Soil Mechanics, 2022, 43(2): 395-404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202011.htm
-
其他相关附件