Experimental study on water and heat migration of unsaturated loess under high temperatures
-
摘要: 黄土的水敏性特点使其强度随含水率降低而大幅增加,高温疏干方法进行黄土加固具有广阔应用前景,研究高温作用下非饱和土水热迁移规律具有重要意义。通过自制高温水热迁移装置,进行不同高温水平下不同初始含水率黄土的水热迁移试验。试验结果表明:高温对水分具有显著驱动作用;当热端温度超过100℃时,试验初期贴近热源土体的水分被快速驱离,是气液相变导致的气态水迁移显著增加所致;含水率分布由峰值曲线逐渐演变为含水率单向增大的缓变曲线;热源温度越高,水分迁移通量越大。建立了高温水热迁移模型,并通过计算验证了模型的可靠性。以体积含水量表示计算所得水分场数据分析了高温和水分含量对水分迁移的综合影响机制,根据黄土高温水分迁移特征在不同体积含水量阶段的差异化表现,将高温水分迁移特征划分为3个区间。Ⅰ低体积含水量区间:水分迁移通量随体积含水量变化曲线呈现峰值曲线,水分主要迁移形式为气态水;Ⅱ中体积含水量区间:随体积含水量增大,气态水迁移通量减小的同时液态水迁移通量增大;Ⅲ高体积含水量区间:温度作用对水分迁移进程不产生影响。Abstract: The strength of loess increases greatly with the decrease of water content. The high-temperature drainage method has broad application prospects for loess reinforcement, so it is significant to study the water and heat transfer of unsaturated soils under high temperatures. A water and heat transfer device allowing the action of high temperatures is developed to test the water and temperature fields of loess with specific initial water content under the action of a high-temperature heat source. The test results show that the high temperature has a significant driving effect on water compared with the normal temperature heat source. When the hot-end temperature exceeds 100℃, the water of soils close to the hot source is rapidly driven away at the beginning of the tests, which is caused by the significant increase of gaseous water migration due to the gas-liquid phase change. The distribution curves of water content gradually evolve from a peak type to a unidirectional increase one of the water content. Water migration fluxes significantly increase with heating source temperature. A high-temperature water and heat transfer model is established, and its accuracy is verified through the trial calculation. The comprehensive influence mechanism of high temperature and water content on water migration is analyzed based on the calculated results. The high-temperature water migration characteristics are divided into three intervals: Ⅰ(low water content interval), the water migration flux curve with water content shows a peak curve, and water migrates mainly in gaseous form. Ⅱ (medium water content interval), as the water content increases, the migration flux of gaseous water decreases while the migration flux of liquid water increases. Ⅲ (high water content interval), the temperature has a rare effect on the water migration. The findings may provide preliminary revelation on the water and heat migration characteristics of high-temperature unsaturated soils.
-
Keywords:
- high temperature /
- unsaturated loess /
- water content /
- water and heat migration
-
-
表 1 试验材料物理指标
Table 1 Physical parameters of test material
试样孔隙比n 试样干密度ρd/(g·cm-3) 塑限wP/% 液限wL/% 塑性指数IP 土颗粒密度rs/(g·cm-3) 含量/% 黏粒(<5 μm) 粉粒(5~50 μm) 砂粒(>50 μm) 0.936 1.4 19.1 31.6 12.5 2.71 22 66 12 表 2 考虑高温影响的气、液态水运移参数表达式
Table 2 Transport parameters and change rates of vapor and liquid water at different temperatures
参数 表达式 来源 η η=9.5+3⋅θ/θsat−8.5⋅exp{−[(1+2.6/√fc)θ/θsat]4} Saito等[27] γ/(N⋅m−1) γ=−16.14×10−5T2−0.16T+76.16, R2 = 0.958 根据数据文献[31]拟合 μw/(μPa⋅s−1) μw=μw0exp[μ1/(R⋅(T−139.85))] Philip等[28] ρvs/(kg⋅m−3) ρvs=10−3T−1exp(31.3716−6014.79T−1−7.92495×10−3T),0∘C<T≤120∘C
ρvs=1.3069×10−7×T−1exp(25.66651−3429.31154×T−1+7.06×10−3T), R2=0.968,120∘C<T≤ 300∘CSaito等[27]根据数据文献[31]拟合 De/(m2⋅s−1) De=(θ7/3v/θ2sat)θv⋅2.12×10−5(T/273.15)2 Milly等[29] 注:T在参数γ中为摄氏温度(℃),在μw,ρvs,De参数中为绝对温度(K);fc为土中黏粒的质量分数;μw0为水分在25℃时的黏滞系数;R为摩尔气体常数。 -
[1] BAI B, XU T, NIE Q K, et al. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119573. doi: 10.1016/j.ijheatmasstransfer.2020.119573
[2] 李建东, 王旭, 张延杰, 等. 球形蒸汽源增湿非饱和黄土水热运移规律试验研究[J]. 岩土工程学报, 2022, 44(4): 687-695. doi: 10.11779/CJGE202204011 LI Jiandong, WANG Xu, ZHANG Yanjie, et al. Experimental study on thermal moisture migration of unsaturated loess humidified by spherical steam source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 687-695. (in Chinese) doi: 10.11779/CJGE202204011
[3] 蔡国庆, 张策, 黄哲文, 等. 含水率对砂质Q3黄土抗剪强度影响的试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 32-36. doi: 10.11779/CJGE2020S2006 CAI Guoqing, ZHANG Ce, HUANG Zhewen, et al. Experimental study on influences of moisture content on shear strength of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 32-36. (in Chinese) doi: 10.11779/CJGE2020S2006
[4] 杨高升, 白冰, 姚晓亮, 等. 非饱和冻土水汽迁移与相变过程的光滑粒子法模拟[J]. 岩土力学, 2021, 42(1): 291-300. YANG Gaosheng, BAI Bing, YAO Xiaoliang, et al. Smoothed particle hydrodynamics for simulation of water vapor migration and phase change in unsaturated frozen soil[J]. Rock and Soil Mechanics, 2021, 42(1): 291-300. (in Chinese)
[5] 姚仰平, 王琳. 影响锅盖效应因素的研究[J]. 岩土工程学报, 2018, 40(8): 1373-1382. doi: 10.11779/CJGE201808002 YAO Yangping, WANG Lin. Influence factors for "pot-cover effect"[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1373-1382. (in Chinese) doi: 10.11779/CJGE201808002
[6] 滕继东, 贺佐跃, 张升, 等. 非饱和土水气迁移与相变: 两类"锅盖效应"的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813-1821. doi: 10.11779/CJGE201610010 TENG Jidong, HE Zuoyue, ZHANG Sheng, et al. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of "canopy effect"[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. (in Chinese) doi: 10.11779/CJGE201610010
[7] TANG T X, SHEN Y P, LIU X, et al. The effect of horizontal freezing on the characteristics of water migration and matric suction in unsaturated silt[J]. Engineering Geology, 2021, 288: 106166. doi: 10.1016/j.enggeo.2021.106166
[8] 张军, 吴涛, 芮大虎, 等. 基于重复分凝成冰作用提高季冻区重金属污染黏性土淋洗效率的研究[J]. 岩土工程学报, 2022, 44(9): 1663-1670. doi: 10.11779/CJGE202209011 ZHANG Jun, WU Tao, RUI Dahu, et al. Improving washing efficiency of heavy metal-contaminated clayey soils based on repeated ice-segregation in seasonal frozen areas[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1663-1670. (in Chinese) doi: 10.11779/CJGE202209011
[9] 雷华阳, 张文振, 冯双喜, 等. 水汽补给下砂土水分迁移规律及冻胀特性研究[J]. 岩土力学, 2022, 43(1): 1-14. LEI Huayang, ZHANG Wenzhen, FENG Shuangxi, et al. On water migration and frost heaving characteristics of sand under water vapor recharge[J]. Rock and Soil Mechanics, 2022, 43(1): 1-14. (in Chinese)
[10] 肖泽岸, 朱霖泽, 侯振荣, 等. 水盐相变对硫酸盐渍土基质吸力影响规律研究[J]. 岩土工程学报, 2022, 44(10): 1935-1941. doi: 10.11779/CJGE202210020 XIAO Zean, ZHU Linze, HOU Zhenrong, et al. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. (in Chinese) doi: 10.11779/CJGE202210020
[11] ZHAO Z K, WANG T H, JIN X, et al. A new model of temperature-dependent permeability coefficient and simulating of pipe leakage produced immersion of loess foundation[J]. Bulletin of Engineering Geology and the Environment, 2022, 82(1): 1-12.
[12] 陈正发, 朱合华, 闫治国. 高温后上海软黏土的土-水特性及微观机理试验研究[J]. 岩土工程学报, 2019, 41(10): 1914-1920. doi: 10.11779/CJGE201910016 CHEN Zhengfa, ZHU Hehua, YAN Zhiguo. Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1914-1920. (in Chinese) doi: 10.11779/CJGE201910016
[13] 陈正发, 朱合华, 闫治国, 等. 高温后上海软黏土的物理性能试验研究[J]. 岩土工程学报, 2015, 37(5): 924-931. doi: 10.11779/CJGE201505019 CHEN Zhengfa, ZHU Hehua, YAN Zhiguo, et al. Experimental study on physical properties of Shanghai soft clay under high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 924-931. (in Chinese) doi: 10.11779/CJGE201505019
[14] 魏天宇, 胡大伟, 周辉, 等. 实时高温及加卸载作用下非饱和压实膨润土气渗与变形特性研究[J]. 岩石力学与工程学报, 2022, 41(3): 587-595. WEI Tianyu, HU Dawei, ZHOU Hui, et al. Influences of real-time temperature and stress cycle on gas permeability and deformation characteristics of unsaturated compacted bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 587-595. (in Chinese)
[15] BURGHIGNOLI A, DESIDERI A, MILIZIANO S. A laboratory study on the thermomechanical behaviour of clayey soils[J]. Canadian Geotechnical Journal, 2000, 37(4): 764-780. doi: 10.1139/t00-010
[16] 陈正汉, 秦冰. 缓冲/回填材料的热-水-力耦合特性及其应用[M]. 北京: 科学出版社, 2017. CHEN Zhenghan, QIN Bing. Thermal-Hydraulic-Mechanical Coupling Characteristics of Buffer/Backfill Materials and Its Application[M]. Beijing: Science Press, 2017. (in Chinese)
[17] 秦冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩土工程学报, 2012, 34(10): 1877-1886. http://www.cgejournal.com/cn/article/id/14878 QIN Bing, CHEN Zhenghan, SUN Faxin, et al. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. (in Chinese) http://www.cgejournal.com/cn/article/id/14878
[18] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese)
[19] 陈皓, 吕海波, 陈正汉, 等. 考虑温度影响的高庙子膨润土强度与变形特性试验研究[J]. 岩石力学与工程学报, 2018, 37(8): 1962-1979. CHEN Hao, LV Haibo, CHEN Zhenghan, et al. Strength and volume change of buffer material under high temperature and pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1962-1979. (in Chinese)
[20] 刘月妙, 王驹, 曹胜飞, 等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J]. 岩土力学, 2013, 34(10): 2756-2762, 2789. LIU Yuemiao, WANG Ju, CAO Shengfei, et al. A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J]. Rock and Soil Mechanics, 2013, 34(10): 2756-2762, 2789. (in Chinese)
[21] CHEN Y F, ZHOU C B, JING L R. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments[J]. Computers and Geotechnics, 2009, 36(8): 1308-1329. doi: 10.1016/j.compgeo.2009.06.001
[22] 秦冰, 陈正汉, 方振东, 等. 基于混合物理论的非饱和土的热-水-力耦合分析模型Ⅰ[J]. 应用数学和力学, 2010, 31(12): 1476-1488. doi: 10.3879/j.issn.1000-0887.2010.12.008 QIN Bing, CHEN Zhenghan, FANG Zhendong, et al. Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures Ⅰ[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1476-1488. (in Chinese) doi: 10.3879/j.issn.1000-0887.2010.12.008
[23] CLEALL P J, SINGH R M, THOMAS H R. Vapour transfer in unsaturated compacted bentonite[J]. Géotechnique, 2013, 63(11): 957-964. doi: 10.1680/geot.12.P.147
[24] 王铁行, 刘自成, 卢靖. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 2007, 28(4): 655-658. WANG Tiehang, LIU Zicheng, LU Jing. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 2007, 28(4): 655-658. (in Chinese)
[25] 王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-948. doi: 10.11779/CJGE201405019 WANG Tiehang, LI Yanlong, SU Lijun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-948. (in Chinese) doi: 10.11779/CJGE201405019
[26] NASSAR I N, HORTON R. Water transport in unsaturated nonisothermal salty soil: Ⅰ. experimental results[J]. Soil Science Society of America Journal, 1989, 53(5): 1323-1329. doi: 10.2136/sssaj1989.03615995005300050004x
[27] SAITO H, ŠIMŮNEK J, MOHANTY B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, 5(2): 784-800. doi: 10.2136/vzj2006.0007
[28] PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222. doi: 10.1029/TR038i002p00222
[29] MILLY P C D, EAGLESON P S. The Coupled Transport of Water and Heat in A Vertical Soil Column under Atmospheric Excitation[R]. Cambridge: Department of Civil Engineering, Massachusetts Institute of Technology, 1980.
[30] 王铁行, 卢靖, 张建锋. 考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究[J]. 岩石力学与工程学报, 2006, 25(11): 2364-2368. doi: 10.3321/j.issn:1000-6915.2006.11.030 WANG Tiehang, LU Jing, ZHANG Jianfeng. Experimental study on permeability coefficient of artificially compacted unsaturated loess considering influence of density[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2364-2368. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.11.030
[31] 严家騄, 余晓福, 王永青. 水和水蒸气热力性质图表[M]. 2版. 北京: 高等教育出版社, 2004. YAN Jialu, YU Xiaofu, WANG Yongqing. Charts of Thermodynamic Properties of Water and Steam[M]. 2nd ed. Beijing: Higher Education Press, 2004. (in Chinese)
-
期刊类型引用(3)
1. 许莹莹,朱晨,孙枫,潘坤,潘晓东. 海相软土弹性剪切模量及静动力刚度弱化特性. 浙江工业大学学报. 2025(02): 131-137+144 . 百度学术
2. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
3. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术
其他类型引用(6)
-
其他相关附件