Theoretical model for evolution of plastic zone of rock mass around deep tunnels and its comparison with in-situ observation
-
摘要: 在高地应力作用下,深部巷道围岩的变形破坏过程表现出了显著的时空效应,研究围岩塑性区的演化规律有助于支护方案的设计与围岩稳定性分析。深部围岩的变形破坏可以看作是其力学性质由固体向流体转换的过程,具有连续渐进相变的特点。结合统计物理学观点,从能量与变形的角度分析了深部围岩塑性区的演化规律:采用有限差分法求解了围岩塑性区演化的kink波解,分析了各参数对塑性区演化过程的影响规律;通过岩石密度–波速关系曲线以及质量守恒定律,建立了围岩波速与塑性应变之间的定量关系,可反演出围岩的变形与应力状态;通过与现场实测数据进行对比,发现kink波解可以很好地描述围岩塑性区的分布及演化规律,验证了理论模型的准确性,可为深部围岩的稳定性分析及灾害防控提供新的思路。Abstract: Under the action of high geo-stress, the deformation and fracture process of surrounding rock mass near deep tunnels is time-dependent. Studying the evolutionary laws of plastic zone in surrounding rock mass is helpful in the optimization of support schemes and analysis of tunnel stability. The deformation and fracture of surrounding rock mass, showing the characteristics of continuous phase transition, can be regarded as a transition process of mechanical properties from solid to liquid. Based on the statistical physics, the evolutionary process of plastic zone in surrounding mass is analyzed from the viewpoint of energy and deformation. The kink wave solution is solved by using the finite difference method, and the sensitivity analysis of parameters in the governing equation is performed. According to the laws of conservation of mass and the relationship between density and ultrasonic velocity, the quantitative relationship between ultrasonic velocity and plastic strains is established to back-reproduce the stress and deformation state of surrounding rock mass. Compared with the in-situ data, it is noted that the kink wave solution can describe the distribution and evolution of plastic zone well, which validates the accuracy of the proposed theoretical model. The results may provide a novel way for the stability analysis and disaster prevention of deep tunnels.
-
-
-
[1] 董方庭. 巷道围岩(软岩)的岩石分类问题[J]. 建井技术, 1985, 6(3): 34–36. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198503013.htm DONG Fang-ting. The classification of the surrounding rock of roadway[J]. Mine Construction Technology, 1985, 6(3): 34–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198503013.htm
[2] 董方庭. 软岩巷道支护基础理论的研究[J]. 建井技术, 1991, 12(增刊1): 40–44, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS1991Z1013.htm DONG Fang-ting. Theoretical study on the supporting of soft rock roadway[J]. Mine Construction Technology, 1991, 12(S1): 40–44, 95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS1991Z1013.htm
[3] 董方庭, 宋宏伟, 郭志宏, 等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994, 19(1): 21–31. doi: 10.3321/j.issn:0253-9993.1994.01.005 DONG Fang-ting, SONG Hong-wei, GUO Zhi-hong, et al. Roadway support theory based on broken rock zone[J]. Journal of China Coal Society, 1994, 19(1): 21–31. (in Chinese) doi: 10.3321/j.issn:0253-9993.1994.01.005
[4] 宋宏伟, 郭志宏, 周荣章, 等. 围岩松动圈巷道支护理论的基本观点[J]. 建井技术, 1994, 15(增刊1): 3–9. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS4Z1.000.htm SONG Hong-wei, GUO Zhi-hong, ZHOU Rong-zhang, et al. Basic viewpoints of the supporting theory of the surrounding rock loose circle[J]. Mine Construction Technology, 1994, 15(S1): 3–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS4Z1.000.htm
[5] 高树棠. 围岩松动圈分析与控制[J]. 建井技术, 1988, 9(4): 39–43, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198804014.htm GAO Shu-tang. Analysis and control of surrounding rock loose circle[J]. Mine Construction Technology, 1988, 9(4): 39–43, 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198804014.htm
[6] 宋宏伟, 梁士杰. 建井巷道围岩稳定性预测方法探讨[J]. 建井技术, 1990, 11(5): 28–30, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS199005011.htm SONG Hong-wei, LIANG Shi-jie. Discussion on prediction on the stability of surrounding rock of tunnel[J]. Mine Construction Technology, 1990, 11(5): 28–30, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS199005011.htm
[7] 阎凤山. 软岩锚喷支护模型研究[D]. 徐州: 中国矿业大学, 1986. YAN Fengshan. Study on the Bolting and Shotcrete Supporting of Soft Rock[D]. Xuzhou: China Mining University, 1986. (in Chinese)
[8] 王汉鹏, 李术才, 郑学芬, 等. 地质力学模型试验新技术研究进展及工程应用[J]. 岩石力学与工程学报, 2009, 28(S1): 2765–2771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1029.htm WANG Han-peng, LI Shu-cai, ZHENG Xue-fen, et al. Research progress of geomechanical model test with new technology and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2765–2771. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1029.htm
[9] 李利平, 李术才, 赵勇, 等. 超大断面隧道软弱破碎围岩空间变形机制与荷载释放演化规律[J]. 岩石力学与工程学报, 2012, 31(10): 2109–2118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210018.htm LI Li-ping, LI Shu-cai, ZHAO Yong, et al. Spatial deformation mechanism and load release evolution law of surrounding rock during construction of super-large section tunnel with soft broken surrounding rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2109–2118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210018.htm
[10] 牛双建, 靖洪文, 杨大方. 深井巷道围岩主应力差演化规律物理模拟研究[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3811–3820. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2050.htm NIU Shuang-jian, JING Hong-wen, YANG Da-fang. Physical simulation study of principal stress difference evolution law of surrounding rock of deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3811–3820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2050.htm
[11] 黄锋, 朱合华, 李秋实, 等. 隧道围岩松动圈的现场测试与理论分析[J]. 岩土力学, 2016, 37(增刊1): 145–150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1019.htm HUANG Feng, ZHU He-hua, LI Qiu-shi, et al. Field detection and theoretic analysis of loose circle of rock mass surrounding tunnel[J]. Rock and Soil Mechanics, 2016, 37(S1): 145–150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1019.htm
[12] PARK K H. Similarity solution for a spherical or circular opening in elastic-strain softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 151–159.
[13] ZAREIFARD M R, FAHIMIFAR A. Analytical solutions for the stresses and deformations of deep tunnels in an elastic-brittle-plastic rock mass considering the damaged zone[J]. Tunnelling and Underground Space Technology, 2016, 58: 186-196.
[14] 平雯, 周传波, 夏志强, 等. 不同地应力条件下巷道围岩松动圈演化研究[J]. 金属矿山, 2014(2): 59–63. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201402014.htm PING Wen, ZHOU Chuan-bo, XIA Zhi-qiang, et al. Study on evolution of loosing rock zone of tunnel surface under different ground stress conditions[J]. Metal Mine, 2014(2): 59–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201402014.htm
[15] 张頔, 李邵军, 徐鼎平, 等. 双江口水电站主厂房开挖初期围岩变形破裂与稳定性分析研究[J]. 岩石力学与工程学报, 2021, 40(3): 520–532. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103006.htm ZHANG Di, LI Shao-jun, XU Ding-ping, et al. Investigation on deformation and cracking behaviors and stability analysis of surrounding rock mass of underground main powerhouse of Shuangjiangkou hydropower station during preliminary excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 520–532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103006.htm
[16] 陈昊祥. 深部巷道围岩分区破裂非线性连续相变模型的数值研究[D]. 北京: 北京建筑大学, 2016. CHEN Hao-xiang. Numerical Research for Nonlinear Continuous Phase Transition Model of Zonal Disintegration of Rock Masses Near Deep-Level Tunnels[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016. (in Chinese)
[17] CATES M E, WITTMER J P, BOUCHAUD J P, et al. Jamming, force chains, and fragile matter[J]. Physical Review Letters, 1998, 81(9): 1841–1844.
[18] LANDAU L D. On the theory of phase transition[J]. Journal of Experimental and Theoretical Physics, 1937, 7: 627–632.
[19] 陈昊祥, 王明洋, 戚承志, 等. 深部圆形巷道围岩能量的调整机制及平衡关系[J]. 岩土工程学报, 2020, 42(10): 1849–1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010014.htm CHEN Hao-xiang, WANG Ming-yang, QI Cheng-zhi, et al. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849–1857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010014.htm
[20] GINZBURG V L, LANDAU L D. On the theory of superconductivity[J]. Journal of Experimental and Theoretical Physics, 1950, 20: 1064–1069.
[21] 陈昊祥, 戚承志, 李凯锐, 等. 深部巷道围岩分区破裂的非线性连续相变模型研究[J]. 岩土力学, 2017, 38(4): 1032–1040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704015.htm CHEN Hao-xiang, QI Cheng-zhi, LI Kai-rui, et al. Nonlinear continuous phase transition model for zonal disintegration of rock masses around deep tunnels[J]. Rock and Soil Mechanics, 2017, 38(4): 1032–1040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704015.htm
[22] 张友博. 多点位移计在深部围岩松动圈厚度测试中应用[J]. 科技创新导报, 2013, 10(19): 30–31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201319023.htm ZHANG You-bo. The application of multi point displacement meter in the test of the thickness of loose circle of surrounding rock[J]. Science and Technology Innovation Herald, 2013, 10(19): 30–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201319023.htm
[23] BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7): 2199–2224.
[24] 金解放, 李夕兵, 殷志强. 英安斑岩物理力学参数与声波速度之间的关系[J]. 矿业研究与开发, 2011, 31(2): 15–17, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201102004.htm JIN Jie-fang, LI Xi-bing, YIN Zhi-qiang. Relationship between physical and mechanical parameters and acoustic wave velocity of daciteporphyry[J]. Mining Research and Development, 2011, 31(2): 15–17, 109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201102004.htm
-
期刊类型引用(10)
1. 赵光明,吴旭坤,刘崇岩,许文松,张启航,韩广辉. 考虑刚度劣化影响的含圆形孔洞砂岩破坏模式及能量释放特征. 中国矿业大学学报. 2025(02): 272-286 . 百度学术
2. 庞冬冬,李传明,庞大伟,陈中琪,贺凯,罗肖龙. 巷道围岩应力应变仿真系统设计与教学探索. 实验室研究与探索. 2024(04): 80-83+93 . 百度学术
3. 余伟健,潘豹,吴根水,郭涵潇. 等效非均匀荷载条件下梯形截面岩石力学特性试验研究. 采矿与岩层控制工程学报. 2024(03): 108-117 . 百度学术
4. 燕发源,王恩志,刘晓丽,戚承志,马庆,谢维强,马前驰. 深部围岩相变理论与分区破裂化现场实测对比. 煤炭学报. 2024(S1): 72-79 . 百度学术
5. 由松江,李昌瑜,张泽升,南华. 松软岩巷局部冒顶机理分析及充填材料研究. 矿业研究与开发. 2024(10): 81-88 . 百度学术
6. 崔岚,廖哲贤,盛谦,郑俊杰,周亮梅. 弹性模量跌减效应下应变软化围岩开挖力学响应. 岩石力学与工程学报. 2024(S2): 3907-3922 . 百度学术
7. 孟福杰,张金来,汪兆松. 金川二矿区贫矿开采对深部巷道稳定性影响研究. 矿业研究与开发. 2023(10): 74-80 . 百度学术
8. 严跃龙. 不同注浆锚索直径对围岩变形的影响研究与应用. 晋控科学技术. 2023(05): 45-48 . 百度学术
9. 李洪蛟. 高偏应力作用下注浆孔围岩塑性区连通机制及加固技术研究. 现代矿业. 2023(10): 109-111+115 . 百度学术
10. 李炜华,王卫军,刘飞飞,马谕杰,袁超,邓宗萍. 锚固位置对深部巷道围岩变形控制影响. 矿业工程研究. 2023(04): 43-50 . 百度学术
其他类型引用(7)