• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深部巷道围岩塑性区演化的理论模型与实测对比研究

陈昊祥, 王明洋, 燕发源, 戚承志

陈昊祥, 王明洋, 燕发源, 戚承志. 深部巷道围岩塑性区演化的理论模型与实测对比研究[J]. 岩土工程学报, 2022, 44(10): 1855-1863. DOI: 10.11779/CJGE202210011
引用本文: 陈昊祥, 王明洋, 燕发源, 戚承志. 深部巷道围岩塑性区演化的理论模型与实测对比研究[J]. 岩土工程学报, 2022, 44(10): 1855-1863. DOI: 10.11779/CJGE202210011
CHEN Hao-xiang, WANG Ming-yang, YAN Fa-yuan, QI Cheng-zhi. Theoretical model for evolution of plastic zone of rock mass around deep tunnels and its comparison with in-situ observation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1855-1863. DOI: 10.11779/CJGE202210011
Citation: CHEN Hao-xiang, WANG Ming-yang, YAN Fa-yuan, QI Cheng-zhi. Theoretical model for evolution of plastic zone of rock mass around deep tunnels and its comparison with in-situ observation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1855-1863. DOI: 10.11779/CJGE202210011

深部巷道围岩塑性区演化的理论模型与实测对比研究  English Version

基金项目: 

国家自然科学基金项目 51679249

北京市自然科学基金项目 8222010

河南省特种防护材料重点实验室开放课题项目 SZKFKT202102

北京建筑大学内涵发展–青年教师科研能力提升计划项目 X2102080921019

详细信息
    作者简介:

    陈昊祥(1992—),男,博士,博士后,主要从事深部岩体力学与工程及防灾减灾方面的研究工作。E-mail:chx@stu.bucea.edu.cn

    通讯作者:

    王明洋,E-mail:wmyrf@163.com

  • 中图分类号: TU452

Theoretical model for evolution of plastic zone of rock mass around deep tunnels and its comparison with in-situ observation

  • 摘要: 在高地应力作用下,深部巷道围岩的变形破坏过程表现出了显著的时空效应,研究围岩塑性区的演化规律有助于支护方案的设计与围岩稳定性分析。深部围岩的变形破坏可以看作是其力学性质由固体向流体转换的过程,具有连续渐进相变的特点。结合统计物理学观点,从能量与变形的角度分析了深部围岩塑性区的演化规律:采用有限差分法求解了围岩塑性区演化的kink波解,分析了各参数对塑性区演化过程的影响规律;通过岩石密度–波速关系曲线以及质量守恒定律,建立了围岩波速与塑性应变之间的定量关系,可反演出围岩的变形与应力状态;通过与现场实测数据进行对比,发现kink波解可以很好地描述围岩塑性区的分布及演化规律,验证了理论模型的准确性,可为深部围岩的稳定性分析及灾害防控提供新的思路。
    Abstract: Under the action of high geo-stress, the deformation and fracture process of surrounding rock mass near deep tunnels is time-dependent. Studying the evolutionary laws of plastic zone in surrounding rock mass is helpful in the optimization of support schemes and analysis of tunnel stability. The deformation and fracture of surrounding rock mass, showing the characteristics of continuous phase transition, can be regarded as a transition process of mechanical properties from solid to liquid. Based on the statistical physics, the evolutionary process of plastic zone in surrounding mass is analyzed from the viewpoint of energy and deformation. The kink wave solution is solved by using the finite difference method, and the sensitivity analysis of parameters in the governing equation is performed. According to the laws of conservation of mass and the relationship between density and ultrasonic velocity, the quantitative relationship between ultrasonic velocity and plastic strains is established to back-reproduce the stress and deformation state of surrounding rock mass. Compared with the in-situ data, it is noted that the kink wave solution can describe the distribution and evolution of plastic zone well, which validates the accuracy of the proposed theoretical model. The results may provide a novel way for the stability analysis and disaster prevention of deep tunnels.
  • 图  1   超声波测孔曲线[3]

    Figure  1.   Curves of ultrasonic hole logging[3]

    图  2   围岩塑性区随时间的变化[5]

    Figure  2.   Evolution of plastic zone of rock[5]

    图  3   岩石破坏的基本模式[16]

    Figure  3.   Basic fracturing model for rock samples[16]

    图  4   深部围岩应力–应变曲线

    Figure  4.   Stress-strain curves of deep surrounding rock mass

    图  5   相曲线及其对应的解的形式

    Figure  5.   Phase curve and form of solution

    图  6   巷道壁围岩变形收敛曲线

    Figure  6.   Convergence of circular excavation

    图  7   巷道围岩塑性区演化过程

    Figure  7.   Evolution process of plastic zone

    图  8   序参量ψ随距离的分布规律

    Figure  8.   Distribution of order parameter ψ with distance

    图  9   不同时刻下巷道围岩塑性区分布

    Figure  9.   Distribution of plastic zone of surrounding rock mass at different time

    图  10   不同C '值时序参量ψ的演化过程

    Figure  10.   Evolution of order parameter ψ with different C '

    图  11   不同a值时序参量ψ的演化过程

    Figure  11.   Evolution of order parameter ψ with different a

    图  12   不同b值时序参量ψ的演化过程

    Figure  12.   Evolution of order parameter ψ with different b

    图  13   不同c值时序参量ψ的演化过程

    Figure  13.   Evolution of order parameter ψ with different c

    图  14   围岩塑性区实测数据与理论对比

    Figure  14.   Comparison between theoretical prediction and in-situ data

    表  1   围岩纵波波速实测数据[5]

    Table  1   In-situ ultrasonic data of plastic zone in surrounding rock mass[5]

    时间 测点1 测点2 测点3 测点4 测点5 测点6
    4月25日 3.17 3.55 4.08 3.91 3.94 3.96
    4月29日 2.50 3.25 3.68 3.80 3.83 3.88
    5月12日 2.51 2.50 2.79 4.04 3.75 3.76
    下载: 导出CSV
  • [1] 董方庭. 巷道围岩(软岩)的岩石分类问题[J]. 建井技术, 1985, 6(3): 34–36. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198503013.htm

    DONG Fang-ting. The classification of the surrounding rock of roadway[J]. Mine Construction Technology, 1985, 6(3): 34–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198503013.htm

    [2] 董方庭. 软岩巷道支护基础理论的研究[J]. 建井技术, 1991, 12(增刊1): 40–44, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS1991Z1013.htm

    DONG Fang-ting. Theoretical study on the supporting of soft rock roadway[J]. Mine Construction Technology, 1991, 12(S1): 40–44, 95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS1991Z1013.htm

    [3] 董方庭, 宋宏伟, 郭志宏, 等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994, 19(1): 21–31. doi: 10.3321/j.issn:0253-9993.1994.01.005

    DONG Fang-ting, SONG Hong-wei, GUO Zhi-hong, et al. Roadway support theory based on broken rock zone[J]. Journal of China Coal Society, 1994, 19(1): 21–31. (in Chinese) doi: 10.3321/j.issn:0253-9993.1994.01.005

    [4] 宋宏伟, 郭志宏, 周荣章, 等. 围岩松动圈巷道支护理论的基本观点[J]. 建井技术, 1994, 15(增刊1): 3–9. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS4Z1.000.htm

    SONG Hong-wei, GUO Zhi-hong, ZHOU Rong-zhang, et al. Basic viewpoints of the supporting theory of the surrounding rock loose circle[J]. Mine Construction Technology, 1994, 15(S1): 3–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS4Z1.000.htm

    [5] 高树棠. 围岩松动圈分析与控制[J]. 建井技术, 1988, 9(4): 39–43, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198804014.htm

    GAO Shu-tang. Analysis and control of surrounding rock loose circle[J]. Mine Construction Technology, 1988, 9(4): 39–43, 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS198804014.htm

    [6] 宋宏伟, 梁士杰. 建井巷道围岩稳定性预测方法探讨[J]. 建井技术, 1990, 11(5): 28–30, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS199005011.htm

    SONG Hong-wei, LIANG Shi-jie. Discussion on prediction on the stability of surrounding rock of tunnel[J]. Mine Construction Technology, 1990, 11(5): 28–30, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS199005011.htm

    [7] 阎凤山. 软岩锚喷支护模型研究[D]. 徐州: 中国矿业大学, 1986.

    YAN Fengshan. Study on the Bolting and Shotcrete Supporting of Soft Rock[D]. Xuzhou: China Mining University, 1986. (in Chinese)

    [8] 王汉鹏, 李术才, 郑学芬, 等. 地质力学模型试验新技术研究进展及工程应用[J]. 岩石力学与工程学报, 2009, 28(S1): 2765–2771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1029.htm

    WANG Han-peng, LI Shu-cai, ZHENG Xue-fen, et al. Research progress of geomechanical model test with new technology and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2765–2771. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1029.htm

    [9] 李利平, 李术才, 赵勇, 等. 超大断面隧道软弱破碎围岩空间变形机制与荷载释放演化规律[J]. 岩石力学与工程学报, 2012, 31(10): 2109–2118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210018.htm

    LI Li-ping, LI Shu-cai, ZHAO Yong, et al. Spatial deformation mechanism and load release evolution law of surrounding rock during construction of super-large section tunnel with soft broken surrounding rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2109–2118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210018.htm

    [10] 牛双建, 靖洪文, 杨大方. 深井巷道围岩主应力差演化规律物理模拟研究[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3811–3820. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2050.htm

    NIU Shuang-jian, JING Hong-wen, YANG Da-fang. Physical simulation study of principal stress difference evolution law of surrounding rock of deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3811–3820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2050.htm

    [11] 黄锋, 朱合华, 李秋实, 等. 隧道围岩松动圈的现场测试与理论分析[J]. 岩土力学, 2016, 37(增刊1): 145–150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1019.htm

    HUANG Feng, ZHU He-hua, LI Qiu-shi, et al. Field detection and theoretic analysis of loose circle of rock mass surrounding tunnel[J]. Rock and Soil Mechanics, 2016, 37(S1): 145–150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1019.htm

    [12]

    PARK K H. Similarity solution for a spherical or circular opening in elastic-strain softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 151–159.

    [13]

    ZAREIFARD M R, FAHIMIFAR A. Analytical solutions for the stresses and deformations of deep tunnels in an elastic-brittle-plastic rock mass considering the damaged zone[J]. Tunnelling and Underground Space Technology, 2016, 58: 186-196.

    [14] 平雯, 周传波, 夏志强, 等. 不同地应力条件下巷道围岩松动圈演化研究[J]. 金属矿山, 2014(2): 59–63. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201402014.htm

    PING Wen, ZHOU Chuan-bo, XIA Zhi-qiang, et al. Study on evolution of loosing rock zone of tunnel surface under different ground stress conditions[J]. Metal Mine, 2014(2): 59–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201402014.htm

    [15] 张頔, 李邵军, 徐鼎平, 等. 双江口水电站主厂房开挖初期围岩变形破裂与稳定性分析研究[J]. 岩石力学与工程学报, 2021, 40(3): 520–532. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103006.htm

    ZHANG Di, LI Shao-jun, XU Ding-ping, et al. Investigation on deformation and cracking behaviors and stability analysis of surrounding rock mass of underground main powerhouse of Shuangjiangkou hydropower station during preliminary excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 520–532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103006.htm

    [16] 陈昊祥. 深部巷道围岩分区破裂非线性连续相变模型的数值研究[D]. 北京: 北京建筑大学, 2016.

    CHEN Hao-xiang. Numerical Research for Nonlinear Continuous Phase Transition Model of Zonal Disintegration of Rock Masses Near Deep-Level Tunnels[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016. (in Chinese)

    [17]

    CATES M E, WITTMER J P, BOUCHAUD J P, et al. Jamming, force chains, and fragile matter[J]. Physical Review Letters, 1998, 81(9): 1841–1844.

    [18]

    LANDAU L D. On the theory of phase transition[J]. Journal of Experimental and Theoretical Physics, 1937, 7: 627–632.

    [19] 陈昊祥, 王明洋, 戚承志, 等. 深部圆形巷道围岩能量的调整机制及平衡关系[J]. 岩土工程学报, 2020, 42(10): 1849–1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010014.htm

    CHEN Hao-xiang, WANG Ming-yang, QI Cheng-zhi, et al. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849–1857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010014.htm

    [20]

    GINZBURG V L, LANDAU L D. On the theory of superconductivity[J]. Journal of Experimental and Theoretical Physics, 1950, 20: 1064–1069.

    [21] 陈昊祥, 戚承志, 李凯锐, 等. 深部巷道围岩分区破裂的非线性连续相变模型研究[J]. 岩土力学, 2017, 38(4): 1032–1040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704015.htm

    CHEN Hao-xiang, QI Cheng-zhi, LI Kai-rui, et al. Nonlinear continuous phase transition model for zonal disintegration of rock masses around deep tunnels[J]. Rock and Soil Mechanics, 2017, 38(4): 1032–1040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704015.htm

    [22] 张友博. 多点位移计在深部围岩松动圈厚度测试中应用[J]. 科技创新导报, 2013, 10(19): 30–31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201319023.htm

    ZHANG You-bo. The application of multi point displacement meter in the test of the thickness of loose circle of surrounding rock[J]. Science and Technology Innovation Herald, 2013, 10(19): 30–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201319023.htm

    [23]

    BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7): 2199–2224.

    [24] 金解放, 李夕兵, 殷志强. 英安斑岩物理力学参数与声波速度之间的关系[J]. 矿业研究与开发, 2011, 31(2): 15–17, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201102004.htm

    JIN Jie-fang, LI Xi-bing, YIN Zhi-qiang. Relationship between physical and mechanical parameters and acoustic wave velocity of daciteporphyry[J]. Mining Research and Development, 2011, 31(2): 15–17, 109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201102004.htm

图(14)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 网络出版日期:  2022-12-11
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回