• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

抽气现场试验的土工膜下盲沟气阻数值模拟研究

曹雪山, 袁俊平, 丁国权

曹雪山, 袁俊平, 丁国权. 抽气现场试验的土工膜下盲沟气阻数值模拟研究[J]. 岩土工程学报, 2022, 44(10): 1780-1788. DOI: 10.11779/CJGE202210003
引用本文: 曹雪山, 袁俊平, 丁国权. 抽气现场试验的土工膜下盲沟气阻数值模拟研究[J]. 岩土工程学报, 2022, 44(10): 1780-1788. DOI: 10.11779/CJGE202210003
CAO Xue-shan, YUAN Jun-ping, DING Guo-quan. Numerical simulation of air resistance of French drains beneath geomembrane in field vacuuming tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1780-1788. DOI: 10.11779/CJGE202210003
Citation: CAO Xue-shan, YUAN Jun-ping, DING Guo-quan. Numerical simulation of air resistance of French drains beneath geomembrane in field vacuuming tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1780-1788. DOI: 10.11779/CJGE202210003

抽气现场试验的土工膜下盲沟气阻数值模拟研究  English Version

基金项目: 

国家重点研发计划重点专项项目 2017YFC0404801

国家重点研发计划重点专项项目 2017YFC0404804

银川都市圈城乡西线供水工程西夏水库扩容工程防渗专题研究项目 819096716

详细信息
    作者简介:

    曹雪山(1970—),男,博士,副教授,主要从事非饱和土力学与基坑工程方面的研究工作。E-mail: x.s.cao@163.com

    通讯作者:

    袁俊平, E-mail: yuan_junph@163.com

  • 中图分类号: TU431

Numerical simulation of air resistance of French drains beneath geomembrane in field vacuuming tests

  • 摘要: 膜下盲沟是水库土工膜防渗方案的重要工程措施,对膜下气体排出具有决定性作用。基于流量变化等效原则,提出了渗透系数与路径长度的平方成比例的变换关系。据此推断出水库面积巨大,排气路径太长,是盲沟气阻引发膜下气胀的主要原因。运用非饱和土固结简化计算方法模拟了抽气条件下膜下气压分布状态;对比现场试验实测值,验证了计算方法和参数的合理性。计算结果表明:无论有无盲沟,膜下沿水平向分为气压急变区和稳定区,气压急变区为抽气点沿水平向2.5 m范围,区内气压显著变化,反映了盲沟气阻的存在性;膜下气压梯度分布规律反映盲沟气阻的变化;影响盲沟气阻的主要因素是材料进气值和饱和度,进气值减小、饱和度降低均有利于减小盲沟气阻。研究成果可为合理评价库盘土工膜防渗方案设计提供科学理论依据。
    Abstract: The French drains beneath the geomembrane are an important engineering measurement for the geomembrane as anti-seepage structures of reservoirs, and have a decisive effect on the air exhaust beneath the geomembrane. The conversion relationship between the permeability coefficient and the square of path length is proposed on the basis of the principle of equivalent flow variation. It is deduced that the important reasons for the bulge of the geomembrane are the huge reservoir area and the long drain path because of the air resistance of French drains. The simplified method for consolidation of unsaturated soils is used to calculate and simulate the air pressure distribution beneath the geomembrane under the condition of vacuuming. The comparison between the measured and calculated values in the field tests has verified the rationality of the proposed method and parameters. The results reveal that a pressure changing zone and a stable zone exist along the horizontal direction whether there is a French drain or not. The pore-air pressure changes significantly in the zone of a range of 2.5 m along the horizontal direction from the vacuuming spot, which indicates the existence of the air resistance of French drain. The distribution of pressure gradient beneath the geomembrane reflects the change of the air resistance of French drain. The main influencing factors for the air resistance of French drain are the air intake value and the degree of saturation of materials. Reducing the air intake value and lowering the degree of saturation are beneficial to reducing the air resistance of French drain. The research results may provide a scientific theoretical basis for the evaluation of the design of anti-seepage scheme of the geomembrane.
  • 随着中国交通行业的不断发展,中国桥梁建设水平得到大幅提升,对桥梁跨越能力的要求也不断增长,悬索桥作为所有桥型中跨越能力最大的桥型,越来越成为跨越大江、大河的主要解决方案。但是随着悬索桥跨度的不断增加,锚碇规模急剧扩大,造成锚碇建设成本过高。因此研究锚碇沉井基础的受力变形特性对于悬索桥的锚碇优化设计显得尤为重要。

    Alampalli[1]在1994年研究了沉井在承受竖向和水平向荷载时的结构响应;李永盛[2]和李家平等[3]分别在1995年和2005年通过模型试验探讨了沉井基础的变形机制和破坏失稳形式;穆保岗等[4]在2017年通过模型试验研究了水平荷载长期作用下沉井变位的特性;Liu等[5]在2019年通过模型试验结合数值模拟分析研究了重力式锚碇的稳定性。

    本文首先进行了在分级水平荷载下的沉井在砂箱中的模型试验,然后基于PLAXIS 3D软件建立了有限元模型,并分析了沉井的位移及沉井前侧和沉井底部的土压力,研究了水平荷载条件下沉井的受力变形规律。

    本文依托南京仙新路大桥北锚碇沉井工程,沉井长度为70 m,宽度为50 m,高度为49.5 m。该工程地基土以粉砂和中砂为主。

    本试验采用的模型槽平面尺寸为4.0 m×2.0 m,高1.0 m。地基土采用中砂,其相对密度为2.68,最大孔隙比0.881,最小孔隙比0.463,不均匀系数3.89,曲率系数0.92。模型试验分层填筑地基土,控制每层填土的厚度为0.1 m,最终得到地基土的干密度为1.55 g/cm3,含水率0.63%,相对密实度为59.61%,内摩擦角为34.5°(快剪)。

    沉井模型平面尺寸为0.7 m×0.5 m,高0.495 m,由厚度为22 mm的钢板焊接而成,试验过程将沉井看成刚体,不考虑沉井自身的变形,为模拟沉井与土体相互作用的界面,通过在沉井表面黏2~3 mm的砂粒实现[6],如图1所示。

    图  1  沉井界面的处理
    Figure  1.  Surface treatment for cassion

    模型试验中设计荷载为62kg,本文中水平荷载分级施加,每级荷载为设计荷载的~0.5倍,试验过程中每级荷载施加持续15 min直至土体破坏(土体破坏表现为沉井盖板处的位移急剧增大),沉井加载示意图如图2所示。

    图  2  沉井加载示意图
    Figure  2.  Schematic diagram of cassion under loading

    本研究建立的有限元模型完全基于模型试验,土体及沉井的单元形状均为四面体十节点实体单元,数值模型的网格如图3所示。

    图  3  有限元模型网格
    Figure  3.  Mesh of finite element model

    砂土的本构模型采用土体硬化(HS)模型,土层参数[7]取值见表1

    表  1  土层参数
    Table  1.  Soil parameters
    土层γ/(kN·m-3)eEs/MPaEoedref/MPaE50ref/MPaEurref/MPacφ/(°)ψ/(°)m
    砂土15.60.72310.210.210.230.6034.500.5
    注:γ为砂土的重度;e为砂土的孔隙比;Es为砂土的压缩模量;Eoedref为砂土的主固结加载切线刚度;E50ref为砂土的标准三轴排水试验割线刚度;Eurref为砂土的卸载重加载刚度;c为砂土的有效黏聚力;φ为砂土的有效摩擦角;ψ为砂土的膨胀角;m为砂土的刚度应力水平相关幂值。
    下载: 导出CSV 
    | 显示表格

    在沉井盖板顶部设置3个位移测量点A、B、C。在位移测量点上放置位移靶标,采用TH-ISM-ST机器视觉测量仪对靶标位移进行测量,分辨率为0.01 mm,靶标布置如图4

    图  4  靶标布置图
    Figure  4.  Layout of targets

    模型试验和数值模拟的位移对比如图5所示,由图易知,模型试验和数值模拟的靶标位移较为一致,本文中取水平位移随设计荷载增加而不断增加的线弹性阶段为水平承载力极限值[4],即安全系数取值为4。

    图  5  模试验和数值模拟的位移对比
    Figure  5.  Comparison of displacements between model tests and numerical simulations

    在沉井前侧设置8个土压力盒,布置如图6所示,由于土压力盒对称分布,且沉井左右侧完全对称,因此取沉井左右两侧土压力盒平均值作为最终结果,结果如图7所示,其中模型试验中3号及3'号土压力盒数据较差,本文中已舍弃,余下的沉井前侧土压力盒数据和数值模拟结果较吻合。

    图  6  沉井前侧土压力盒布置图
    Figure  6.  Layout of earth pressure cells on front side of caisson
    图  7  模试验和数值模拟的沉井前侧土压力对比
    Figure  7.  Comparison of soil pressures on front side of caisson between model tests and numerical simulations

    在沉井底部设置12个土压力盒,布置如图8所示,同理,取沉井左右两侧土压力盒平均值作为最终结果,结果如图9所示,其中8号及8'号土压力盒数据较差,本文中已舍弃,余下的沉井底部土压力盒数据和数值模拟结果对比,发现当施加荷载/设计荷载的值小于等于4时较一致,当其值大于4之后,二者的结果相差较大。

    图  8  沉井底部土压力盒布置图
    Figure  8.  Layout of earth pressure cells on bottom of caisson
    图  9  模型试验和数值模拟的沉井前侧土压力对比
    Figure  9.  Comparison of soil pressures on bottom of the caisson between model tests and numerical simulations

    本文在已有的研究基础上,通过开展模型试验和数值模拟计算,得到水平荷载下沉井的受力变位特性,主要得出以下结论:

    (1)对锚碇沉井基础在砂土中的受力变位特性进行了试验研究和有限元分析,结果显示,水平荷载下锚碇沉井基础在砂土中的破坏模式为倾覆破坏,且安全系数远大于2,说明现阶段规范[8]中锚碇设计较为保守,有进一步的优化空间。

    (2)通过PLAXIS 3D软件建立了锚碇沉井基础的有限元模型,采用应变硬化的本构模型,结果表明模型试验的结果和有限元模型计算的结果较为一致,说明数值建模过程中的土体本构模型及参数取值可靠,表明PLAXIS 3D软件能够较好的模拟锚碇沉井在砂土中的受力变形行为。

    上述模型试验和有限元分析,只是针对水平荷载条件下锚碇沉井基础在砂土中的受力特性开展的研究,只考虑了单层干砂的地基土层,尚需更近一步探索。

  • 图  1   二维单元分析

    Figure  1.   Analysis of two-dimensional element

    图  2   水库场地地质剖面图

    Figure  2.   Geological section of reservoir site

    图  3   水库膜下排气排水系统布置图

    Figure  3.   Layout of French drain system beneath geomembrane of reservoir

    图  4   膜下盲沟设计方案大样图

    Figure  4.   Diagram of French drain beneath geomembrane

    图  5   膜下气场的模拟计算模型

    Figure  5.   Models for air field beneath geomembrane

    图  6   抽气范围内膜下气压计算结果

    Figure  6.   Calculated results of pore-air pressure beneath geomembrane by field vacuuming tests

    图  7   膜下抽气点附近的气压计算结果

    Figure  7.   Pore-air pressures beneath geomembrane near vacuuming spot

    图  8   不同深度处气压与距离的关系

    Figure  8.   Relationship between air pressure and distance at different depths

    图  9   不同位置处气压与深度的关系

    Figure  9.   Relationship between air pressure and depth at different distances

    图  10   不同深度处气压梯度与距离关系

    Figure  10.   Relationship between air pressure gradient and distance at different depths

    图  11   不同距离处气压梯度与深度关系

    Figure  11.   Relationship between air pressure gradient and depth at different distances

    图  12   盲沟气阻的影响因素

    Figure  12.   Influencing factors of air resistance in French drain

    表  1   非线性E-μ模型计算参数

    Table  1   Parameters of E-μ model for air field beneath geomembrane

    土料 γ/(kN·m-3) φ/(°) c/kPa Rf K n G F D Kur Kws/(m·s-1) Kd/(m·s-1) e Sr0/% Srl/% λ usb/kPa
    角砾土 22.4 30 10 0.93 400 0.6 0.3 0.15 1.5 800 3×10-4 3.22×10-3 0.53 0.90 0.11 4.1 3.1
    盲沟 18.0 22 0 0.95 300 0.6 0.3 0.20 1.9 800 0.2 0.2 0.53 0.85 0.11 4.1 0.5
    防渗膜 0.036 22 100 0.93 300 0.6 0.3 0.17 1.0 650 5.0×10-11 5.0×10-11 0.064
    下载: 导出CSV

    表  2   膜下气压的现场试验值

    Table  2   Pore air pressures beneath geomembranes by in-situ tests

    项目 最低值/kPa 最高值/kPa 平均值/kPa 数据量/个 均方差/kPa
    TP01 -0.90 -0.46 -0.68 11 0.13
    TP02 -0.97 -0.56 -0.76 11 0.13
    TP03 -0.80 -0.47 -0.64 11 0.11
    TP04 -0.46 -0.23 -0.34 11 0.08
    GP01 -2.67 -2.30 -2.49 11 0.12
    GP02 -1.02 -0.48 -0.77 11 0.18
    GP03 -1.10 -0.43 -0.85 11 0.22
    注:TP是埋设于土体中渗压计;GP是埋设于盲沟内的渗压计。GP01是盲沟与真空泵连接部位的渗压计,即为试验场地的抽气点。
    下载: 导出CSV
  • [1] 水电工程土工膜防渗技术规范: NB/T 35027—2014[S]. 北京: 中国电力出版社, 2014.

    Technical Code for Geomembrane-Based Anti-Seepage of Hydropower Projects: NB/T 35027—2014[S]. Beijing: China Electric Power Press, 2014. (in Chinese)

    [2]

    CAO X S, YUAN J P, HE G L, et al. Investigation of air bulging beneath geomembranes used as a liner for the datun reservoir[J]. Environmental & Engineering Geoscience, 2015: 1078–7275. doi: 10.7524/j.issn.0254-6108.2015.06.2014091606

    [3] 王薇, 崔化宇, 李国伟. 水平铺塑在新城水库库区防渗中的应用[J]. 人民黄河, 2003, 25(9): 38–39. doi: 10.3969/j.issn.1000-1379.2003.09.020

    WANG Wei, CUI Hua-yu, LI Guo-wei. Application of horizontal plastic paving in seepage control of Xincheng Reservoir area[J]. Yellow River, 2003, 25(9): 38–39. (in Chinese) doi: 10.3969/j.issn.1000-1379.2003.09.020

    [4] 张文华. 全库盆土工膜防渗水库的基础处理设计与探讨[J]. 水利规划与设计, 2016(9): 98–101. doi: 10.3969/j.issn.1672-2469.2016.09.030

    ZHANG Wen-hua. Design and discussion of foundation treatment for full reservoir basin geomembrane impermeable reservoirs[J]. Water Resources Planning and Design, 2016(9): 98–101. (in Chinese) doi: 10.3969/j.issn.1672-2469.2016.09.030

    [5] 袁俊平, 曹雪山, 和桂玲, 等. 平原水库防渗膜下气胀现象产生机制现场试验研究[J]. 岩土力学, 2014, 35(1): 67–73. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401010.htm

    YUAN Jun-ping, CAO Xue-shan, HE Gui-ling, et al. Field test study of mechanism of bulge phenomenon under geomembrane in plain reservoir[J]. Rock and Soil Mechanics, 2014, 35(1): 67–73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401010.htm

    [6]

    CAO X S, YUAN J P, HE G L, et al. In situ test and analysis method of air bulging under geomembranes in a shallow-lined reservoir[J]. Geotextiles and Geomembranes, 2015, 43(1): 24–34. doi: 10.1016/j.geotexmem.2014.11.005

    [7]

    HAMAMOTO S, MOLDRUP P, KAWAMOTO K, et al. Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils[J]. Vadose Zone Journal, 2009, 8(4): 986–995. doi: 10.2136/vzj2008.0157

    [8] 陈存礼, 张登飞, 张洁, 等. 等向应力条件下原状Q3黄土的渗气特性研究[J]. 岩土工程学报, 2017, 39(2): 287–294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702015.htm

    CHEN Cun-li, ZHANG Deng-fei, ZHANG Jie, et al. Gas permeability of intact Q3 loess under isotropic stresses[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 287–294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702015.htm

    [9] 姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q3黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264–1273. doi: 10.3969/j.issn.1000-6915.2012.06.023

    YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Experimental research on gas permeability of unsaturated Q3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264–1273. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.023

    [10] 袁俊平, 张锋, 王启贵, 等. 裂隙对压实膨胀土渗气性影响试验[J]. 水利水电科技进展, 2014, 34(3): 34–38. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201403009.htm

    YUAN Jun-ping, ZHANG Feng, WANG Qi-gui, et al. The influences of fissure on gas permeability of the compacted expansive soil[J]. Advances in Science and Technology of Water Resources, 2014, 34(3): 34–38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201403009.htm

    [11] 姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65–74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65–74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    [12] 公路路基设计规范: JTG D30—2015[S]. 北京: 人民交通出版社, 2015.

    Specifications for Design of Highway Subgrades: JTG D30—2015[S]. Beijing: China Communications Press, 2015. (in Chinese)

    [13] 贾向新, 聂庆科, 王英辉, 等. 真空井点降水试验分析与数值模拟[J]. 岩土力学, 2014, 35(S2): 607–612, 618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2086.htm

    JIA Xiang-xin, NIE Qing-ke, WANG Ying-hui, et al. Analysis and numerical simulation of vacuum well point dewatering test[J]. Rock and Soil Mechanics, 2014, 35(S2): 607–612, 618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2086.htm

    [14] 曹雪山, 殷宗泽. 非饱和土二维固结简化计算的研究[J]. 岩土力学, 2009, 30(9): 2575–2580. doi: 10.3969/j.issn.1000-7598.2009.09.006

    CAO Xue-shan, YIN Zong-ze. Simplified computation of two-dimensional consolidation of unsaturated soils[J]. Rock and Soil Mechanics, 2009, 30(9): 2575–2580. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.09.006

    [15] 殷宗泽, 凌华. 非饱和土一维固结简化计算[J]. 岩土工程学报, 2007, 29(5): 633–637. doi: 10.3321/j.issn:1000-4548.2007.05.001

    YIN Zong-ze, LING Hua. Simplified computation of 1D consolidation for partially saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 633–637. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.001

    [16] 曹雪山, 殷宗泽. 土石坝心墙水力劈裂的非饱和土固结方法研究[J]. 岩土工程学报, 2009, 31(12): 1851–1857. doi: 10.3321/j.issn:1000-4548.2009.12.008

    CAO Xue-shan, YIN Zong-ze. Consolidation method of unsaturated soils for hydraulic fracturing of core walls of rock-fill dams[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1851–1857. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.12.008

    [17]

    AITCHISON G D. Relationship of moisture and effective stress functions in unsaturated soils[C]// Pore Pressure and Suction in Soils Conf, London, Butterworths, 1961: 47–52.

    [18]

    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. Hoboken, N: John Wiley & Sons, Inc., 1993.

    [19] 张登飞, 陈存礼, 舒迎涛, 等. 原状黄土的结构性与渗气特性的关联性初探[J]. 岩土工程学报, 2021, 43(7): 1345–1351. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107027.htm

    ZHANG Deng-fei, CHEN Cun-li, SHU Ying-tao, et al. Correlation between structure of intact loess and gas permeability[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1345–1351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107027.htm

    [20] 张志红, 陈杨, 张志亮, 等. 高饱和条件下水-力-化耦合模型及数值模拟[J]. 岩土力学, 2018, 39(增刊2): 100–106. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2016.htm

    ZHANG Zhi-hong, CHEN Yang, ZHANG Zhi-liang, et al. Hydro-mechanical-chemical coupling model and numerical simulation under high saturated condition[J]. Rock and Soil Mechanics, 2018, 39(S2): 100–106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2016.htm

    [21] 殷宗泽. 土工原理[M]. 北京: 中国水利水电出版社, 2007.

    YIN Zong-ze. Geotechnical Principle[M]. Beijing: China Water Power Press, 2007. (in Chinese)

    [22] 介玉新, 李广信. 有限元计算中土工合成材料渗流问题的处理[J]. 水利水电科技进展, 2009, 29(6): 42–43, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200906014.htm

    JIE Yu-xin, LI Guang-xin. FEM calculation of seepage through geosyntherics[J]. Advances in Science and Technology of Water Resources, 2009, 29(6): 42–43, 62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200906014.htm

    [23] 《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京: 中国建筑工业出版社, 2018.

    The Engineering Geological Manual Editorial Board. Engineering Geology Manual[M]. 5th ed. Beijing: China Architecture and Building Press, 2018. (in Chinese)

    [24] 朱东, 莫倩倩. 西夏水库设计报告[R]. 银川: 宁夏水利水电勘测设计研究院有限公司, 2018.

    ZHU Dong, MO Qian-qian. Design Report of Xixia Reservoir[R]. Yinchuan: Ningxia Water Resources and Hydropower Survey, Design and Research Institute Co, Ltd, 2018. (in Chinese)

    [25] 袁俊平, 曹雪山, 丁国权, 等. 西夏水库扩容工程防渗系统专题研究报告[R]. 南京: 河海大学, 2020.

    YUAN Jun-ping, CAO Xue-shan, DING Guo-quan, et al. Thematic Study Report on Seepage Control System of Xixia Reservoir Expansion Project[R]. Nanjing: Hohai University, 2020. (in Chinese)

图(12)  /  表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  27
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 网络出版日期:  2022-12-11
  • 刊出日期:  2022-09-30

目录

/

返回文章
返回