• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

降雨作用下黄土填方区交界面水分迁移及沉降规律研究

赵文赫, 杨秀娟, 王宝仲, 樊恒辉, 孟敏强, 朱振

赵文赫, 杨秀娟, 王宝仲, 樊恒辉, 孟敏强, 朱振. 降雨作用下黄土填方区交界面水分迁移及沉降规律研究[J]. 岩土工程学报, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
引用本文: 赵文赫, 杨秀娟, 王宝仲, 樊恒辉, 孟敏强, 朱振. 降雨作用下黄土填方区交界面水分迁移及沉降规律研究[J]. 岩土工程学报, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
Citation: ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016

降雨作用下黄土填方区交界面水分迁移及沉降规律研究  English Version

基金项目: 

国家自然科学基金项目 52079116

国家重点研发计划项目 2017YFC0504703

详细信息
    作者简介:

    赵文赫(1996—),男,硕士,主要从事特殊土的工程性质及其改良技术方面的研究工作。E-mail: zhaowenhe1201@163.com

    通讯作者:

    樊恒辉, E-mail: yt07@nwsuaf.edu.cn

  • 中图分类号: TU444

Laws of water migration and settlement at interface in loess filled areas under rainfalls

  • 摘要: 针对黄土高原地区治沟造地实践中由于填方区新老交界面及不同压实度交界面等而引起的管涌、塌陷、滑坡、不均匀沉降、裂缝等灾害,通过建立黄土填方区新老交界面及不同压实度交界面实体物理模型,研究了降雨作用下黄土填方区交界面水分迁移及沉降规律。试验结果表明:①雨水下渗速率随着填土压实度的降低而增快,低压实度填土体积含水率和孔隙水压力在峰值附近存在“骤增骤减”现象,孔隙水压力具有明显滞后性;②湿润锋在交界面附近出现明显过渡区,交界面存在雨水优势流通道;③交界面上方土体总沉降与交界面上方填土高度成非线性关系,不同压实度交界面上缘的局部倾斜值远大于交界面下缘,局部倾斜最大值靠近交界面上缘;④交界面两侧压实度差越大,土体的差异沉降越大,交界面发生破坏趋势越大;⑤填土的大幅沉降以及土体的不均匀沉降往往伴随着表面裂缝的产生,最大裂缝出现在填方区不同压实度交界面上缘附近。研究结果表明,在治沟造地等岩土工程实践中,提高回填土压实度对降低不均匀沉降及防止交界面出现裂缝具有重要意义。
    Abstract: The new-old interfaces and those with different compaction degrees often cause disasters such as piping, collapse, landslide, uneven settlement and crack in the duration of gully control and land creation projects in the Loess Plateau areas. The relevant physical models are established to reveal the laws of water migration and settlement at interface in loess filled areas under rainfalls. The results show that: (1) The velocity of rainwater seepage increases as the compaction degree of fill decreases. The volumetric moisture content and pore water pressure under low compaction degrees fill increase and decrease sharply near the peak. Besides, the pore water pressure has obvious hysteresis. (2) The wetting front has an obvious transition zone near the interface, where a rainwater dominant flow channel is available. (3) The total settlement of soils is nonlinearly related to the fill height above the interface. Besides, the local incline of the upper edge of the interface with different compaction degrees is much larger than that of the lower edge of the interface, and the maximum local incline appears near the upper edge of the interface. (4) The difference in settlement between soils correlates positively with the difference in compaction degree between the two sides of the interface. Meanwhile, the trend of failure at the interface becomes larger as the difference in compaction degree between the two sides of the interface increases. (5) The large settlement of fill and uneven settlement of soils are often accompanied by surface cracks, and the largest crack appears near the upper edge of the interface with different compaction degrees in soil fill area. Therefore, increasing the compaction degree of fill soils is of great significance for reducing the uneven settlement and preventing the cracks at interface in gully control and land creation projects.
  • 图  1   “治沟造地”工程管涌与裂缝破坏

    Figure  1.   Piping and crack destruction in " gully control and land creation " projects

    图  2   降雨试验装置示意图

    Figure  2.   Schematic diagram of rainfall test device

    图  3   监测系统

    Figure  3.   Monitoring system

    图  4   沉降示踪装置及点位布置

    注: 1~21为示踪点编号。

    Figure  4.   Settlement tracer device and layout of measuring points

    图  5   体积含水率及孔隙水压力传感器点位布置

    注: 1~16为含水率传感器编号(括号内外分别距两侧有机玻璃板20 cm,对称分布),后文用W1~W16代替; WP1~WP8为孔隙水压力传感器编号(居中放置)

    Figure  5.   Layout of measuring points for volumetric moisture content and pore water pressure sensors

    图  6   方案1体积含水率时程曲线

    Figure  6.   Time-history curves of volumetric moisture content in scheme 1

    图  7   方案3体积含水率时程曲线

    Figure  7.   Time-history curves of volumetric moisture content in scheme 3

    图  8   方案1的孔隙水压力时程曲线

    Figure  8.   Time-history curves of pore water pressure in scheme 1

    图  9   方案3的孔隙水压力时程曲线

    Figure  9.   Time-history curves of pore water pressure in scheme 3

    图  10   湿润锋运移图

    Figure  10.   Developement of wetting front

    图  11   湿润锋最大深度时程曲线

    Figure  11.   Time-history curves of maximum depth of wetting front

    图  12   方案1各阶段模型顶面等高线图

    Figure  12.   Contour map of top surface of model at each stage in scheme 1

    图  13   方案1降雨结束前后模型表面形态图

    Figure  13.   Surface morphologies of model before and after rainfall in scheme 1

    图  14   填土高度与沉降量关系

    Figure  14.   Relationship between fill height and settlement

    图  15   典型示踪点位置图

    Figure  15.   Location map of typical tracer points

    图  16   降雨前后模型俯瞰图

    Figure  16.   Vertical views of model before and after rainfall

    表  1   土样基本物理性质

    Table  1   Basic physical properties of soils

    颗粒相对质量密度 液限/% 塑限/% 塑性指数 最大干密度/(g·cm-3) 最优含水率/%
    2.72 33.7 18.9 14.8 1.76 17.5
    下载: 导出CSV

    表  2   降雨模型试验方案

    Table  2   Test programs for rainfall model

    试验方案编号 固定回填土压实度/% 变化回填土压实度/% 初始地形坡度/(°)
    1 80 60 45
    2 80 70 45
    3 80 80 45
    下载: 导出CSV

    表  3   填方区局部倾斜

    Table  3   Local incline of fill areas

    方案1 方案3
    填土高度/cm 局部倾斜/% 填土高度/cm 局部倾斜/%
    0 11.11 0 0.67
    10 15.67 10 0.44
    20 16.17 20 0.67
    30 19.39 30 0.33
    40 15.06 40 0.06
    50 13.50 50 0.39
    60 13.06 60 0.67
    70 10.78 70 0.83
    80 9.28 80 0.33
    90 5.22 90 0.94
    100 1.44 100 0.44
    下载: 导出CSV
  • [1]

    LI P Y, QIAN H, WU J H. Environment: accelerate research on land creation[J]. Nature, 2014, 510(7503): 29–31. doi: 10.1038/510029a

    [2] 高建中. 延安新区黄土丘陵沟壑区域工程造地实践[M]. 北京: 中国建筑工业出版社.

    GAO Jian-zhong. Engineering Practice of Land Reciamation in Loess Hilly Gully Areas in Yan'an New District[M]. Beijing: China Architecture & Building Press. (in Chinese)

    [3] 郭楠, 陈正汉, 杨校辉, 等. 重塑黄土的湿化变形规律及细观结构演化特性[J]. 西南交通大学学报, 2019, 54(1): 73–81, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901010.htm

    GUO Nan, CHEN Zheng-han, YANG Xiao-hui, et al. Research on wetting-deformation regularity and microstructure evolution characteristics of remoulded loess in triaxial soaking tests[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 73–81, 90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901010.htm

    [4] 高登辉, 陈正汉, 郭楠, 等. 干密度和基质吸力对重塑非饱和黄土变形与强度特性的影响[J]. 岩石力学与工程学报, 2017, 36(3): 736–744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm

    GAO Deng-hui, CHEN Zheng-han, GUO Nan, et al. The influence of dry density and matric suction on the deformation and the strength characteristics of the remolded unsaturated loess soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 736–744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm

    [5] 张龙, 陈正汉, 扈胜霞, 等. 延安某工地填土的渗水和持水特性研究[J]. 岩土工程学报, 2018, 40(增刊1): 183–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1031.htm

    ZHANG Long, CHEN Zheng-han, HU Sheng-xia, et al. Seepage and water retention characteristics of fill in a construction site in Yan'an[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 183–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1031.htm

    [6] 张豫川, 高飞, 吕国顺, 等. 基于黄土蠕变试验的高填方地基沉降的数值模拟[J]. 科学技术与工程, 2018, 18(30): 220–227. doi: 10.3969/j.issn.1671-1815.2018.30.036

    ZHANG Yu-chuan, GAO Fei, LÜ Guo-shun, et al. Numerical simulation of high fill foundation settlement based on creep test of loess[J]. Science Technology and Engineering, 2018, 18(30): 220–227. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.30.036

    [7] 葛苗苗, 李宁, 郑建国, 等. 基于一维固结试验的压实黄土蠕变模型[J]. 岩土力学, 2015, 36(11): 3164–3170, 3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511017.htm

    GE Miao-miao, LI Ning, ZHENG Jian-guo, et al. A creep model for compacted loess based on 1D oedometer test[J]. Rock and Soil Mechanics, 2015, 36(11): 3164–3170, 3306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511017.htm

    [8] 徐明, 宋二祥. 高填方长期工后沉降研究的综述[J]. 清华大学学报(自然科学版), 2009(6): 786–789. doi: 10.3321/j.issn:1000-0054.2009.06.002

    XU Ming, SONG Er-xiang. Review of long-term settling of high fills[J]. Journal of Tsinghua University (Science and Technology), 2009(6): 786–789. (in Chinese) doi: 10.3321/j.issn:1000-0054.2009.06.002

    [9]

    ZHU C H, LI N. Ranking of influence factors and control technologies for the post-construction settlement of loess high-filling embankments[J]. Computers and Geotechnics, 2020, 118: 103320. doi: 10.1016/j.compgeo.2019.103320

    [10] 张瑞松, 唐辉, 高建中. 延安新区大厚度压实填土地基均匀性评价[J]. 岩土工程技术, 2020, 34(1): 24–26, 52. doi: 10.3969/j.issn.1007-2993.2020.01.005

    ZHANG Rui-song, TANG Hui, GAO Jian-zhong. Uniformity evaluation of compacted fill foundation with large thickness in Yan'an new district[J]. Geotechnical Engineering Technique, 2020, 34(1): 24–26, 52. (in Chinese) doi: 10.3969/j.issn.1007-2993.2020.01.005

    [11] 刘家伟, 樊恒辉, 杨秀娟, 等. 原状黄土–压实黄土接触面抗剪强度特性研究[J]. 人民黄河, 2021, 43(2): 127–130. doi: 10.3969/j.issn.1000-1379.2021.02.026

    LIU Jia-wei, FAN Heng-hui, YANG Xiu-juan, et al. Characteristics of shear strength of the interface between disturbed loess and undisturbed loess[J]. Yellow River, 2021, 43(2): 127–130. (in Chinese) doi: 10.3969/j.issn.1000-1379.2021.02.026

    [12] 李博. 重塑黄土接触面渗透破坏研究[D]. 杨凌: 西北农林科技大学, 2020.

    LI Bo. Research on the Seepage Failure of the Remolded Loess Interface[D]. Yangling: Northwest A & F University, 2020. (in Chinese)

    [13] 甄平福. 黄土高填方场地大型现场浸水试验研究[D]. 西安: 长安大学, 2018.

    ZHEN Ping-fu. Study on the Large Area Field Immersion Tests in Loess High Fill Ground[D]. Xi'an: Changan University, 2018. (in Chinese)

    [14] 朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845–854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005009.htm

    ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845–854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005009.htm

    [15] 方磊, 李广信, 黄锋. 室内土工模型试验的新方法: 桩基渗水力土工模型试验[J]. 高校地质学报, 1997, 3(4): 451–457. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199704013.htm

    FANG Lei, LI Guang-xin, HUANG Feng. A new indoor model test of soil-the hydraulic gradient similitude model test for piled foundation[J]. Geological Journal of China Universitiesf, 1997, 3(4): 451–457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199704013.htm

    [16] 徐向舟, 刘大庆, 张红武, 等. 室内人工模拟降雨试验研究[J]. 北京林业大学学报, 2006, 28(5): 52–58. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200605009.htm

    XU Xiang-zhou, LIU Da-qing, ZHANG Hong-wu, et al. Laboratory rainfall simulation with controlled rainfall intensity and drainage[J]. Journal of Beijing Forestry University, 2006, 28(5): 52–58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200605009.htm

    [17] 李广信. 静孔隙水压力与超静孔隙水压力: 兼与陈愈炯先生讨论[J]. 岩土工程学报, 2012, 34(5): 957–960. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205030.htm

    LI Guang-xin. Static pore water pressure and excess pore water pressure—a discussion with Mr. CHEN Yu-Jiong[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 957–960. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205030.htm

    [18] 李广信, 李学梅. 土力学中的渗透力与超静孔隙水压力[J]. 岩土工程界, 2009, 12(4): 11–12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200904011.htm

    LI Guang-xin, LI Xue-mei. Seepage force and excess pore water pressure in soil mechanic[J]. Geotechnical Engineering World, 2009, 12(4): 11–12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200904011.htm

    [19] 高朝侠. 黄土区土壤大孔隙流试验研究[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2014.

    GAO (CHAO Zhao-xia). The Experimental Study on Macropore Flow in Loess Region[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2014. (in Chinese)

    [20] 邵生俊, 李骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965–978. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506002.htm

    SHAO Sheng-jun, LI Jun, LI Guo-liang, et al. Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965–978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506002.htm

    [21] 乔建伟, 夏玉云, 郑建国, 等. 黄土湿陷地裂缝发育特征与成因机理研究[J]. 灾害学, 2021, 36(3): 71–76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202103014.htm

    QIAO Jian-wei, XIA Yu-yun, ZHENG Jian-guo, et al. Research on development characteristics and formation mechanisms of collapsible earth fissure[J]. Journal of Catastrophology, 2021, 36(3): 71–76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202103014.htm

  • 期刊类型引用(3)

    1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 . 百度学术
    2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
    13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 . 百度学术

    其他类型引用(13)

图(16)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-08-15
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回