Failure mechanism of surrounding rock and control of floor heave in heterogeneous composite rock roadway
-
摘要: 深部高地应力、层间软弱夹层(结构面)等复杂应力环境下复合煤(岩)巷道围岩变形严重,底鼓问题尤为突出。针对某矿-830水平大巷复合区域岩巷底鼓大变形技术难题,梳理了复合岩巷现场变形破坏特征,分析了围岩破坏力学机制。结合滑移线场理论建立底鼓力学模型,推导了底板破坏半径R0的显式解析式,并借助ZDY钻孔窥视仪对围岩内部损伤裂隙发育程度进行量化表征。建立UDEC数值计算模型反演了原支护下复合岩巷围岩应力、裂隙发育特征以及位移分布规律,综合分析了复合岩巷底鼓变形机理。结果表明:高地应力、邻近岩石极限强度差异大、底板岩性差、底板无支护或弱支护是复合岩巷产生底鼓大变形的根本性原因。结合现场调研及数值模拟分析结果,基于“固底–强帮”整体支护、“强–弱–强”组合承载圈分梯次加固底板的控制思路,提出了一种“全断面锚索+预制块反底拱”锚注联合支护技术应用于复合岩巷底鼓返修实践中。现场监测结果表明,巷道返修60 d内底鼓缓慢变形直至趋于稳定,最大底鼓量约为67.9 mm,相比原支护条件下底鼓变形量降低了95%,大大降低了巷道重复返修的可能性,确保了该矿煤炭资源安全高效开采Abstract: Under the complex stress environment of deep high ground stress and interlayer weak interlayer (structural surface), the deformation of the surrounding rock of composite coal (rock) roadway is severe, and the floor heave is particularly prominent. In view of the technical difficulties in the large deformation of the floor heave in the complex region of -830 roadway in a mine, the deformation and failure characteristics of the roadway are investigated, and the failure mechanics mechanism of the surrounding rock is analyzed. Based on the theory of slip-line field, a mechanical model for the floor heave is established and is used to derive an explicit analytical formula for the failure radius of the floor (R0). With the help of ZDY borehole peeper, the development degree of damage cracks in the surrounding rock is quantified. The UDEC numerical calculation model is established to inverse the stress of the surrounding rock, fracture development characteristics and displacement distribution laws of composite rock roadway under the original support, and the deformation mechanism of floor heave of composite rock roadway is comprehensively analyzed. The results show that the high ground stress, large difference in the ultimate strength of adjacent rock, poor lithology of floor, no support or weak support of floor are the fundamental causes of deformation of the floor heave in composite rock roadway. Considering the results of field investigation and numerical simulation analysis, based on the control idea of "solid bottom-strong side" overall support and "strong-weak-strong" combined bearing ring to strengthen the floor plate step by step, a combined support technology of "full-section anchor cable + precast block inverted-arch" is proposed and applied to the repair practice of the floor heave of composite rock roadway. The field monitoring results show that the floor heave deforms slowly until it becomes stable within 60 days of roadway repair, and the maximum floor heave is about 67.9 mm, which is 95% lower than that under the original support conditions, greatly reducing the possibility of repeated repair of roadway and ensuring the safe and efficient mining of coal resources in the mine.
-
-
表 1 复合岩体剪切破坏条件
Table 1 Shear damage conditions of composite rock mass
层理角度 破坏判据 破坏类型 角度/(°) 应力/MPa β,β0,β1,β2 β0=π4+φw2 σ1⩾σ3+2(cw + σ3tanφw)√1+tan2φw−tanφw 沿层理面破坏,复合岩体的强度取决于层理面强度 β1⩽β⩽β2 σ1⩾σ3+2(cw + σ3tanφw)(1−tanφwcot2β)sin2β \begin{array}{l}0\le \beta < {\beta }_{1}或\\ {\beta }_{2} < \beta \le 90°\end{array} {\sigma _1} \geqslant 2{c_0}\frac{{\cos {\varphi _0}}}{{1 - \sin {\varphi _0}}} + \frac{{1 + \sin {\varphi _0}}}{{1 - \sin {\varphi _0}}}{\sigma _3} 不沿层理面破坏,复合岩体强度取决于上、下2个岩块强度 表 2 模型块体及节理物理力学参数
Table 2 Physical and mechanical parameters of blocks and joints in model
岩性 块体参数 节理参数 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 法向刚度/(GPa·m-1) 切向刚度/(GPa·m-1) 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 砂岩 2 600 11.20 5.80 6.20 35 4.5 23.6 4.7 2.7 24 2.1 泥岩 2 100 2.40 1.30 1.30 17 1.2 14.2 2.8 1.2 20 0.9 砂质泥岩 2 350 5.00 2.60 3.60 20 2.1 18.5 3.7 1.6 18 0.6 7号煤 1 300 0.53 0.32 1.05 23 0.4 6.1 1.2 0.9 15 0.2 -
[1] 东兆星, 吴士良. 井巷工程[M]. 徐州: 中国矿业大学出版社, 2004. DONG Zhao-xing, WU Shi-liang. Shaft engineering[M]. Xuzhou: China University of Mining & Technology Press, 2004. (in Chinese)
[2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283–1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm XIE He-ping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
[3] 王琦, 王雷, 刘博宏, 等. 破碎围岩注浆体空隙特征和力学性能研究[J]. 中国矿业大学学报, 2019, 48(6): 1197–1205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906004.htm WANG Qi, WANG Lei, LIU Bo-hong, et al. Study of void characteristics and mechanical properties of fractured surrounding rock grout[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1197–1205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906004.htm
[4] 王卫军, 袁越, 余伟健, 等. 采动影响下底板暗斜井的破坏机理及其控制[J]. 煤炭学报, 2014, 39(8): 1463–1472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408013.htm WANG Wei-jun, YUAN Yue, YU Wei-jian, et al. Failure mechanism of the subinclined shaft in floor under mining influence and its control[J]. Journal of China Coal Society, 2014, 39(8): 1463–1472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408013.htm
[5] 孙晓明, 张国锋, 蔡峰, 等. 深部倾斜岩层巷道非对称变形机制及控制对策[J]. 岩石力学与工程学报, 2009, 28(6): 1137–1143. doi: 10.3321/j.issn:1000-6915.2009.06.007 SUN Xiao-ming, ZHANG Guo-feng, CAI Feng, et al. Asymmetric deformation mechanism within inclined rock strata induced by excavation in deep roadway and its controlling countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1137–1143. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.007
[6] 姜耀东, 陆士良. 巷道底臌机理的研究[J]. 煤炭学报, 1994, 19(4): 343–351. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB404.001.htm JIANG Yao-dong, LU Shi-liang. Investigation of mechanism of floor heave of roadway[J]. Journal of China Coal Society, 1994, 19(4): 343–351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB404.001.htm
[7] 文志杰, 卢建宇, 肖庆华, 等. 软岩回采巷道底臌破坏机制与支护技术[J]. 煤炭学报, 2019, 44(7): 1991–1999. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907005.htm WEN Zhi-jie, LU Jian-yu, XIAO Qing-hua, et al. Failure mechanism of floor heave and supporting technology of soft rock roadway[J]. Journal of China Coal Society, 2019, 44(7): 1991–1999. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907005.htm
[8] 高明中, 井欢庆. 巷道非对称底鼓的力学解析[J]. 安徽理工大学学报(自然科学版), 2012, 32(4): 38–43. doi: 10.3969/j.issn.1672-1098.2012.04.009 GAO Ming-zhong, JING Huan-qing. Mechanical analysis of asymmetric floor heave of roadway[J]. Journal of Anhui University of Science and Technology (Natural Science), 2012, 32(4): 38–43. (in Chinese) doi: 10.3969/j.issn.1672-1098.2012.04.009
[9] 柏建彪, 李文峰, 王襄禹, 等. 采动巷道底鼓机理与控制技术[J]. 采矿与安全工程学报, 2011, 28(1): 1–5. doi: 10.3969/j.issn.1673-3363.2011.01.001 BAI Jian-biao, LI Wen-feng, WANG Xiang-yu, et al. Mechanism of floor heave and control technology of roadway induced by mining[J]. Journal of Mining & Safety Engineering, 2011, 28(1): 1–5. (in Chinese) doi: 10.3969/j.issn.1673-3363.2011.01.001
[10] 安智海, 张农, 倪建明, 等. 朱仙庄煤矿松软破碎岩层巷道底鼓控制技术[J]. 采矿与安全工程学报, 2008, 25(3): 263–267. doi: 10.3969/j.issn.1673-3363.2008.03.003 AN Zhi-hai, ZHANG Nong, NI Jian-ming, et al. Floor heave control technique for broken soft rock roadway in Zhuxianzhuang mine[J]. Journal of Mining & Safety Engineering, 2008, 25(3): 263–267. (in Chinese) doi: 10.3969/j.issn.1673-3363.2008.03.003
[11] 谢广祥, 常聚才. 超挖锚注回填控制深部巷道底臌研究[J]. 煤炭学报, 2010, 35(8): 1242–1246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201008004.htm XIE Guang-xiang, CHANG Ju-cai. Study on overcutting-bolting & grouting-backfilling concrete to control the floor heave of deep mine roadway[J]. Journal of China Coal Society, 2010, 35(8): 1242–1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201008004.htm
[12] 康红普, 林健, 吴拥政. 全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J]. 煤炭学报, 2009, 34(9): 1153–1159. doi: 10.3321/j.issn:0253-9993.2009.09.001 KANG Hong-pu, LIN Jian, WU Yong-zheng. High pretensioned stress and intensive cable bolting technology set in full section and application in entry affected by dynamic pressure[J]. Journal of China Coal Society, 2009, 34(9): 1153–1159. (in Chinese) doi: 10.3321/j.issn:0253-9993.2009.09.001
[13] 彭瑞, 赵光明, 孟祥瑞. 基于D-P准则的非均匀应力场受扰动轴对称巷道安全性分析[J]. 中国安全科学学报, 2014, 24(1): 103–108. doi: 10.3969/j.issn.1003-3033.2014.01.017 PENG Rui, ZHAO Guang-ming, MENG Xiang-rui. Analysis of safety of disturbed and axisymmetric roadway under non-uniform stress field based on D-P criterion[J]. China Safety Science Journal, 2014, 24(1): 103–108. (in Chinese) doi: 10.3969/j.issn.1003-3033.2014.01.017
[14] 李季, 彭博, 袁鹏. 深部沿空巷道顶板蝶叶塑性区"低阻微变"性形成机理研究[J]. 采矿与安全工程学报, 2019, 36(3): 465–472, 481. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903005.htm LI Ji, PENG Bo, YUAN Peng. A formation mechanism of "low resistance and slight change" in plastic zone of butterfly leaf on the roof in deep roadway[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 465–472, 481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903005.htm
[15] 冯帆, 赵兴东, 陈绍杰, 等. 结构面位置对于深部高应力采动硬岩巷道破坏的影响[J]. 中南大学学报(自然科学版), 2021, 52(8): 2588–2600. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108007.htm FENG Fan, ZHAO Xing-dong, CHEN Shao-jie, et al. Effect of structural plane position on hard tunnel failure during excavation unloading subjected to high stresses in deep level mines[J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2588–2600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108007.htm
[16] 张淑坤, 王树达, 王来贵, 等. 结构面局部弱化影响下巷道围岩稳定性研究[J]. 中国安全科学学报, 2018, 28(7): 116–121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201807019.htm ZHANG Shu-kun, WANG Shu-da, WANG Lai-gui, et al. Stability study of roadway surrounding rock under influence of local weakening of structural plane[J]. China Safety Science Journal, 2018, 28(7): 116–121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201807019.htm
[17] 耶格尔J C, 库克N G W. 岩石力学基础[M]. 中国科学院工程力学研究所译. 北京: 科学出版社, 1981. JAEGER J C, COOK N G W. Fundamentals of Rock-Mechanics[M]. Translated by Institute of Mechanics, Chinese Academy of Sciences. Beijing: Science Press, 1981. (in Chinese)
[18] 程辉, 赵洪宝, 徐建峰, 等. 基于滑移线场理论的巷道底鼓机理与防治技术研究[J]. 矿业科学学报, 2021, 6(3): 314–322. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202103009.htm CHENG Hui, ZHAO Hong-bao, XU Jian-feng, et al. Study on floor heave mechanism and control technology of roadway based on slip line field theory[J]. Journal of Mining Science and Technology, 2021, 6(3): 314–322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202103009.htm
[19] ZHANG L Y, EINSTEIN H H. Using RQD to estimate the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 337–341. doi: 10.1016/S1365-1609(03)00100-X
[20] SINGH M, RAO K S. Empirical methods to estimate the strength of jointed rock masses[J]. Engineering Geology, 2005, 77(1/2): 127–137. doi: 10.1016/j.enggeo.2004.09.001
[21] 侯朝炯. 深部巷道围岩控制的关键技术研究[J]. 中国矿业大学学报, 2017, 46(5): 970–978. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201705003.htm HOU Chao-jiong. Key technologies for surrounding rock control in deep roadway[J]. Journal of China University of Mining & Technology, 2017, 46(5): 970–978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201705003.htm
-
期刊类型引用(8)
1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术
其他类型引用(3)