• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高应力厚煤层大巷孤立煤体蠕变失稳冲击机理及防治研究

王高昂, 朱斯陶, 姜福兴, 李士栋, 刘金海, 周涛, 宁廷洲, 李欢, 孔震

王高昂, 朱斯陶, 姜福兴, 李士栋, 刘金海, 周涛, 宁廷洲, 李欢, 孔震. 高应力厚煤层大巷孤立煤体蠕变失稳冲击机理及防治研究[J]. 岩土工程学报, 2022, 44(9): 1689-1698. DOI: 10.11779/CJGE202209014
引用本文: 王高昂, 朱斯陶, 姜福兴, 李士栋, 刘金海, 周涛, 宁廷洲, 李欢, 孔震. 高应力厚煤层大巷孤立煤体蠕变失稳冲击机理及防治研究[J]. 岩土工程学报, 2022, 44(9): 1689-1698. DOI: 10.11779/CJGE202209014
WANG Gao-ang, ZHU Si-tao, JIANG Fu-xing, LI Shi-dong, LIU Jin-hai, ZHOU Tao, NING Ting-zhou, LI Huan, KONG Zhen. Creep instability rock burst mechanism and prevention technology of isolated coal mass in roadways of high-stress thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1689-1698. DOI: 10.11779/CJGE202209014
Citation: WANG Gao-ang, ZHU Si-tao, JIANG Fu-xing, LI Shi-dong, LIU Jin-hai, ZHOU Tao, NING Ting-zhou, LI Huan, KONG Zhen. Creep instability rock burst mechanism and prevention technology of isolated coal mass in roadways of high-stress thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1689-1698. DOI: 10.11779/CJGE202209014

高应力厚煤层大巷孤立煤体蠕变失稳冲击机理及防治研究  English Version

基金项目: 

国家自然科学基金项目 51904017

山东省重大科技创新工程项目 2019SDZY02

中央高校基本科研业务费项目 FRF-TP-20-002A2

详细信息
    作者简介:

    王高昂(1995—),男,博士研究生,从事矿山压力与岩层控制方面的研究。E-mail: wanggaoang26@163.com

    通讯作者:

    朱斯陶, E-mail: zhusitao@ustb.edu.cn

  • 中图分类号: TU431

Creep instability rock burst mechanism and prevention technology of isolated coal mass in roadways of high-stress thick coal seam

  • 摘要: 针对高应力大巷煤柱区孤立煤体在无明显采掘扰动情况下频繁发生冲击显现的现状,以山东赵楼煤矿七采区高应力厚煤层大巷煤柱为工程背景,采用理论分析、数值模拟和现场调研等方法,研究了不稳定蠕变作用下高应力厚煤层大巷围岩和孤立煤体的应力演化规律,揭示了高应力大巷孤立煤体蠕变失稳冲击机理:在高应力作用下煤层巷道围岩发生不稳定蠕变,不稳定蠕变弱化了巷道支护体系,增大了孤立煤体的应力集中程度,当大巷孤立煤体弹性承载区集中应力超过其极限承载能力时,高应力孤立煤体发生冲击失稳。建立了高应力厚煤层大巷孤立煤体蠕变失稳及冲击力学模型,推导出了大巷孤立煤体蠕变失稳冲击的力学判据,据此提出了高应力厚煤层大巷孤立煤体冲击地压防治对策,通过现场实践验证了理论分析的合理性。
    Abstract: In view of the present situation of frequent rock burst appearances of isolated coal body in coal pillar areas of high-stress roadways without obvious mining disturbance, taking the coal pillar of the high-stress thick coal seam in the seventh mining area of Zhaolou Coal Mine in Shandong Province as the engineering background, creep instability rock burst mechanism and prevention technology of isolated coal mass in roadways of high-stress thick coal seam are investigated though theoretical analysis, numerical simulation and on-site investigation. Firstly, the stress evolution laws induced by unstable creep instability of the surrounding rock and the isolated coal body in the roadways of high-stress thick coal seam are studied. Secondly, the mechanism of rock burst induced by creep instability of isolated coal in high-stress roadways is revealed. The results show that the overall instability rock burst is easily induced, when the concentrated stress in the elastic bearing zone of isolated coal body exceeds its ultimate bearing capacity. Thirdly, the creep instability and rock burst mechanical model for isolated coal body in roadways of high-stress thick coal seam is established, and the mechanical criterion of creep instability and rock burst of isolated coal body in roadways is deduced. Finally, the relevant measures are put forward to prevent and control this type of rock burst. The rationality of the theoretical analysis is verified through field practices.
  • 图  1   赵楼煤矿二集下山概况

    Figure  1.   General situation of roadways in Zhaolou Coal Mine

    图  2   第二集中回风下山巷道变形量

    Figure  2.   Statistics of deformation of surrounding rock in roadways

    图  3   二集下山区域微震特征曲线

    Figure  3.   Microseismic characteristic curves of roadway area

    图  4   岩石全应力–应变曲线图

    Figure  4.   Full stress-strain curve of rock

    图  5   巷道围岩塑性区演化示意图

    Figure  5.   Evolution diagram of plastic zone of surrounding rock of roadways

    图  6   巷道支护失效示意图

    Figure  6.   Diagram of failure of roadway support

    图  7   蠕变前后煤体支承压力演化

    Figure  7.   Evolution of abutment pressure of coal mass before and after creep

    图  8   应力均化示意图

    Figure  8.   Diagram of stress homogenization

    图  9   蠕变前后孤立煤体应力变化剖面图

    Figure  9.   Stress profile of isolated coal before and after creep

    图  10   孤立煤体蠕变后支承压力简化示意图

    Figure  10.   Simplified schematic diagram of abutment pressure after creep of isolated coal

    图  11   孤立煤体诱发冲击力学模型

    Figure  11.   Mechanical model for isolated coal-induced rock burst

    图  12   塑性区演化数值模拟图

    Figure  12.   Numerical simulation of evolution of plastic zone

    图  13   不同开挖步数孤立煤体垂直应力曲线

    Figure  13.   Curves of vertical stress of isolated coal with different excavation steps

    图  14   高应力厚煤层大巷孤立煤体冲击地压防治对策

    Figure  14.   Prevention and control countermeasures of rock burst of isolated coal in roadways of high-stress thick coal seam

    图  15   5301采空区与断层应力叠加曲线

    Figure  15.   Superposition curve of goaf 5301 and fault stress

    图  16   大巷间距与冲击危险性关系示意图

    Figure  16.   Relationship between roadway spacing and impact risk

    图  17   赵楼煤矿不同巷道层位冲击危险性关系示意图

    Figure  17.   Schematic diagram of impact risk relation of different roadway layers in Zhaolou Coal Mine

  • [1] 姜鹏飞, 康红普, 王志根, 等. 千米深井软岩大巷围岩锚架充协同控制原理、技术及应用[J]. 煤炭学报, 2020, 45(3): 1020–1035. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003016.htm

    JIANG Peng-fei, KANG Hong-pu, WANG Zhi-gen, et al. Principle, technology and application of soft rock roadway strata control by means of "rock bolting, U-shaped yielding steel arches and back filling" in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society, 2020, 45(3): 1020–1035. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003016.htm

    [2] 朱斯陶, 姜福兴, 刘金海, 等. 我国煤矿整体失稳型冲击地压类型、发生机理及防治[J]. 煤炭学报, 2020, 45(11): 3667–3677. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202011003.htm

    ZHU Si-tao, JIANG Fu-xing, LIU Jin-hai, et al. Types, occurcenec mechanism and prevention of overall istability induced rockbursts in China coal mines[J]. Journal of China Coal Society, 2020, 45(11): 3667–3677. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202011003.htm

    [3] 孙守义, 赵长政, 张云, 等. 多煤层重复采动穿层大巷围岩变形特征及修复加固技术研究[J]. 采矿与安全工程学报, 2020, 37(4): 681–688. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202004005.htm

    SUN Shou-yi, ZHAO Chang-zheng, ZHANG Yun, et al. The deformation characteristics of surrounding rock of crossing roadway in multiple seams under repeated mining and its repair and reinforcement technology[J]. Journal of Mining & Safety Engineering, 2020, 37(4): 681–688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202004005.htm

    [4] 于洋, 柏建彪, 张树娟, 等. 双翼采动大巷群围岩灾变机理与修复加固体系研究[J]. 采矿与安全工程学报, 2020, 37(6): 1133–1141. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202006007.htm

    YU Yang, BAI Jian-biao, ZHANG Shu-juan, et al. Disaster mechanism of surrounding rock with double wing mining roadway group and its repair and reinforcement system[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1133–1141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202006007.htm

    [5] 高晓进, 李煜炜, 张振金, 等. 软岩巷道大变形双主动超前爆破预裂顶板防控技术[J]. 煤炭学报, 2020, 45(增刊2): 589–598. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S2006.htm

    GAO Xiao-jin, LI Yu-wei, ZHANG Zhen-jin, et al. Prevention and control technology of pre-splitting roof by dual active advanced blasting in soft rock large deformation roadway[J]. Journal of China Coal Society, 2020, 45(S2): 589–598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S2006.htm

    [6] 王高昂, 朱斯陶, 姜福兴, 等. 千米深井大巷孤立煤体整体失稳冲击机理及防治研究[J]. 采矿与安全工程学报, 2019, 36(5): 968–976. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201905015.htm

    WANG Gao-ang, ZHU Si-tao, JIANG Fu-xing, et al. Mechanism of rock burst induced by overall instability of isolated coal and its prevention in large well at thousands-kilometer underground[J]. Journal of Mining & Safety Engineering, 2019, 36(5): 968–976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201905015.htm

    [7] 潘俊锋, 刘少虹, 秦子晗, 等. 深部盘区巷道群集中静载荷型冲击地压机理与防治[J]. 煤炭学报, 2018, 43(10): 2679–2686. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810003.htm

    PAN Jun-feng, LIU Shao-hong, QIN Zi-han, et al. Mechanism and prevention of concentrated static load type rock burst of roadway group in deep mining area[J]. Journal of China Coal Society, 2018, 43(10): 2679–2686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810003.htm

    [8] 薛成春, 曹安业, 牛风卫, 等. 深部不规则孤岛煤柱区冲击地压机理及防治[J]. 采矿与安全工程学报, 2021, 38(3): 479–486. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202103006.htm

    XUE Cheng-chun, CAO An-ye, NIU Feng-wei, et al. Mechanism and prevention of rock burst in deep irregular isolated coal pillar[J]. Journal of Mining & Safety Engineering, 2021, 38(3): 479–486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202103006.htm

    [9] 孟庆彬, 孙稳, 韩立军, 等. 深井软岩巷道群掘进扰动效应与控制技术研究[J]. 采矿与安全工程学报, 2021, 38(3): 496-506. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202103008.htm

    MENG Qing-bin, SUN Wen, HAN Li-jun, et al. Disturbing effect of excavation in deep soft rock roadways and control technology[J]. Journal of Mining & Safety Engineering, 2021, 38(3): 496–506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202103008.htm

    [10] 刘帅, 杨科, 唐春安. 深井软岩下山巷道群非对称破坏机理与控制研究[J]. 采矿与安全工程学报, 2019, 36(3): 455–464. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903004.htm

    LIU Shuai, YANG Ke, TANG Chun-an. Asymmetric failure mechanism and control of downhill roadway group of soft rock in deep mine[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 455–464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903004.htm

    [11] 尹万蕾, 潘一山, 李忠华, 等. 孤立煤柱非线性蠕变失稳滞后时间的研究[J]. 应用力学学报, 2016, 33(6): 1106–1112, 1126. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201606028.htm

    YIN Wan-lei, PAN Yi-shan, LI Zhong-hua, et al. Lag time study on nonlinear creep buckling of the isolated coal pillar[J]. Chinese Journal of Applied Mechanics, 2016, 33(6): 1106–1112, 1126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201606028.htm

    [12] 刘金海, 郑学军, 刘虎, 等. 冲击地压矿井采区下山保护煤柱合理宽度研究[J]. 煤炭科学技术, 2021, 49(2): 52–60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102007.htm

    LIU Jin-hai, ZHENG Xue-jun, LIU Hu, et al. Study on rational width of protective coal pillar for district dip in rock burst mine[J]. Coal Science and Technology, 2021, 49(2): 52–60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102007.htm

    [13] 陈国祥, 郭兵兵, 镐振. 圆形巷道围岩加速蠕变影响下冲击地压的启动条件[J]. 煤炭学报, 2020, 45(10): 3401–3407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202010004.htm

    CHEN Guo-xiang, GUO Bing-bing, HAO Zhen. Rockburst start-up condition influenced by accelerated creep of surrounding rock of circular roadway[J]. Journal of China Coal Society, 2020, 45(10): 3401–3407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202010004.htm

    [14] 王青元, 刘杰, 王培涛, 等. 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781–788, 798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003008.htm

    WANG Qing-yuan, LIU Jie, WANG Pei-tao, et al. Experimental investigation of accelerated failure of creep rock induced by impact disturbance[J]. Rock and Soil Mechanics, 2020, 41(3): 781–788, 798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003008.htm

    [15] 姜福兴, 冯宇, KOUAME K J A, 等. 高地应力特厚煤层"蠕变型"冲击机理研究[J]. 岩土工程学报, 2015, 37(10): 1762–1768. doi: 10.11779/CJGE201510003

    JIANG Fu-xing, FENG Yu, KOUAME K J A, et al. Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1762–1768. (in Chinese) doi: 10.11779/CJGE201510003

    [16] 经纬, 薛维培, 荣传新. 巷道(隧道)围岩稳定蠕变上下阈值及确定方法[J]. 煤炭学报, 2018, 43(10): 2718–2723. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810008.htm

    JING Wei, XUE Wei-pei, RONG Chuan-xin. Stable creep upper and lower thresholds in roadway(tunnel) surrounding rock and it's determination method[J]. Journal of China Coal Society, 2018, 43(10): 2718–2723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810008.htm

    [17] 杨光宇. 特厚煤层掘进巷道冲击地压分区防控研究[D]. 北京: 北京科技大学, 2019.

    YANG Guang-yu. Partition Prevention and Control of Rock Burst at the Headgate of Ultra-Thick Coal Seam[D]. Beijing: University of Science and Technology Beijing, 2019. (in Chinese)

    [18] 赵阳升, 冯增朝, 万志军. 岩体动力破坏的最小能量原理[J]. 岩石力学与工程学报, 2003, 22(11): 1781–1783. doi: 10.3321/j.issn:1000-6915.2003.11.005

    ZHAO Yang-sheng, FENG Zeng-chao, WAN Zhi-jun. Least energy priciple of dynamical failure of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1781–1783. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.11.005

    [19] 王保齐, 朱斯陶, 周涛, 等. 深井煤层大巷矿震发生机理及防治研究[J]. 煤炭技术, 2020, 39(3): 5–8. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202003003.htm

    WANG Bao-qi, ZHU Si-tao, ZHOU Tao, et al. Study on mechanism and prevention of mine earthquakes in deep shaft main roadways[J]. Coal Technology, 2020, 39(3): 5–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202003003.htm

  • 期刊类型引用(7)

    1. 赵兵,申思,丁冠群. 浅析土工格室生态护坡抗冲刷性能——以简阳空港大道项目为例. 四川建筑. 2024(05): 281-283 . 百度学术
    2. 孙健,杨广庆,左政,梁训美,王奇伟. 熔接型聚丙烯土工格室拉伸特性试验研究. 科学技术与工程. 2023(20): 8788-8794 . 百度学术
    3. 王志杰,齐逸飞,杨广庆,蔡永明,刘伟超. 土工格室加筋碎石复合体大型三轴试验研究. 铁道学报. 2023(09): 161-169 . 百度学术
    4. 李丹,董建刚,胡波,李波. 土工格室加筋砂土大型叠环式剪切试验研究. 人民长江. 2023(12): 211-217 . 百度学术
    5. 左政,杨广庆,王贺,许淋颖,靳静,梁训美. 土工格室规格对加筋土剪切性能的影响. 岩土工程学报. 2022(06): 1053-1060 . 本站查看
    6. 王艳坤,刘杰,宋玲,张兴疆,高斌. 土工格室加固风积沙地基模型试验研究. 公路交通科技. 2022(07): 40-48 . 百度学术
    7. 蒲昌瑜,刘欣超,苏鹏辉,杨广庆. HDPE焊接型土工格室结点拉伸力学特性试验研究. 交通世界. 2022(28): 55-57 . 百度学术

    其他类型引用(10)

图(17)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-09-27
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回