Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests
-
摘要: 富水裂隙岩体中的注浆是一个将浆液压入裂隙内空腔并驱替地下水的过程,开展浆液–水两相流驱替渗流规律研究对优化工程注浆方案具有重要意义。研发了基于粒子图像测速技术(PIV)的可视化驱替试验系统与方法,获取了3D打印的透明粗糙裂隙内的流场分布以及流速与压差的关系;基于有限元法求解Navier-Stokes偏微分方程组模拟驱替过程,与试验测试结果进行了对比验证。结果表明:在恒定流速条件下,注浆压力会随着时间的增加呈现先缓慢增大再加速增大,最终趋于一个定值的演变趋势;浆液首先沿优势渗流通道驱替水,在到达出口后压力增速减缓,随后在较长的时间内逐渐驱替残余水;残余水的分布主要集中在连通主要渗流通道边缘的盲端孔隙和开度大小发生突变的细小孔隙处,具有较低的流速;采用平行平板模型评价具有相同开度的粗糙裂隙中的注浆过程将低估注浆压力达45%。注浆压力是工程注浆中的一个关键控制参数,在理论计算中应充分考虑粗糙度的影响以确定合理的注浆压力,提升注浆效果。Abstract: The grouting in water-rich fractured rock masses is a process in which the pressurized grouts gradually displace the existing water. It is important to thoroughly investigate the grout-water displacement laws for improving the engineering grouting efficiency. In this study, a visualization technique that incorporates the particle image velocimetry (PIV) into the grout-water displacement tests is established, and is used to capture the flow field distribution in a 3D-printed transparent rough-walled fracture along with the flow velocity and hydraulic pressure measurements. The Navier-Stokes equations are solved based on the finite element method to simulate the displacement process, and the simulation is compared with the experimental observations. The results show that under the constant flow rate, the injection pressure first increases gently, followed by a rapid increase stage, and finally approaches a constant value. The grouts preferentially flow through some major channels, and the injection pressure tends to increase gently after the grout reaches the outlet. The residual water is mainly distributed in the dead end close to the edge of main flow channels and the locations where sudden changes in aperture happen. The parallel-plate model can underestimate the injection pressure by up to 45% comparing to the corresponding rough-walled model. It is therefore necessary to consider fracture roughness in the theoretical assessment of grouting pressures to achieve better grouting performance.
-
Keywords:
- rough-walled fracture /
- grouting /
- two-phase flow /
- PIV /
- displacement
-
-
表 1 平行平板模型渗流测试结果
Table 1 Hydraulic testing results of a parallel-plate model
Q △P eh Re /(m3·s-1) /Pa /mm 8.33×10-9 0.70 1.14 0.09 3.33×10-8 3.00 1.11 0.34 6.66×10-8 7.00 1.06 0.69 9.99×10-8 9.00 1.11 1.03 1.33×10-7 12.00 1.11 1.37 1.67×10-7 16.00 1.09 1.72 3.33×10-7 31.00 1.10 3.43 平均值 1.11 表 2 数值模拟参数表
Table 2 Parameters used in numerical simulation
参数 表达式(单位) 取值 密度 ρ/(kg·m-3) 987.1 重力加速度 g/(m·s-2) 9.81 力学开度 em/mm 1.54 入口流量 Q/(m3·s-1) 1.67×10−8,3.33×10-8, 6.66×10−8,9.99×10-8, 1.33×10−7,1.67×10-7 Re 0.168,0.337,
0.675,1.013,1.35,1.69 -
[1] 熊峰, 姜清辉, 陈胜云, 等. 裂隙–孔隙双重介质Darcy-Forchheimer耦合流动模拟方法及工程应用[J]. 岩土工程学报, 2021, 43(11): 2037–2045. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202111012.htm XIONG Feng, JIANG Qing-hui, CHEN Sheng-yun, et al. Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2037–2045. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202111012.htm
[2] STILLE H. Rock Grouting-Theories and Applications[M]. Stockholm: BeFo, Rock Engineering Research Foundation, 2015.
[3] HÄSSLER L, HÅKANSSON U, STILLE H. Computer-simulated flow of grouts in jointed rock[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 441–446. doi: 10.1016/0886-7798(92)90074-R
[4] ERIKSSON M, STILLE H, ANDERSSON J. Numerical calculations for prediction of grout spread with account for filtration and varying aperture[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 353–364. doi: 10.1016/S0886-7798(01)00004-9
[5] HÅKANSSON U, HÄSSLER L, STILLE H. Rheological properties of microfine cement grouts[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 453–458. doi: 10.1016/0886-7798(92)90076-T
[6] HÅKANSSON U. Rheology of Fresh Cement Based Grouts[D]. Stockholm: Royal Institute of Technology, Sweden, 1993.
[7] BAKER C. Comments on Paper Rock Stabilization in Rock Mechanics[M]. New York: Springer-Verlag NY, 1974: 22–57.
[8] 王渊. 基于多孔介质迂曲度的牛顿流体渗透注浆机制研究[D]. 昆明: 昆明理工大学, 2020. WANG Yuan. Study on Newtonian Fluid Infiltration Grouting Mechanism Based on Tortuosity of Porous Media[D]. Kunming: Kunming University of Science and Technology, 2020. (in Chinese)
[9] WROBEL M. An efficient algorithm of solution for the flow of generalized Newtonian fluid in channels of simple geometries[J]. Rheologica Acta, 2020, 59(9): 651–663. doi: 10.1007/s00397-020-01228-2
[10] AMADEI B, SAVAGE W Z. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 285–296. doi: 10.1016/S1365-1609(00)00080-0
[11] 章敏, 王星华, 汪优. Herschel-Bulkley浆液在裂隙中的扩散规律研究[J]. 岩土工程学报, 2011, 33(5): 815–820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105028.htm ZHANG Min, WANG Xing-hua, WANG You. Diffusion of Herschel-Bulkley slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 815–820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105028.htm
[12] SUI W H, LIU J Y, HU W, et al. Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water[J]. Tunnelling and Underground Space Technology, 2015, 50(22): 239–249. http://www.researchgate.net/profile/Jinyuan_Liu/publication/281101597_Experimental_investigation_on_sealing_efficiency_of_chemical_grouting_in_rock_fracture_with_flowing_water/links/5650ed3b08aefe619b1563cc.pdf
[13] 李博, 蒋宇静. 岩石单节理面剪切与渗流特性的试验研究与数值分析[J]. 岩石力学与工程学报, 2008, 27(12): 2431–2439. doi: 10.3321/j.issn:1000-6915.2008.12.007 LI Bo, JIANG Yu-jing. Experimental study and numerical analysis of shear and flow behaviors of rock with single joint[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2431–2439. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.007
[14] 李训刚, 唐超, 张帅, 等. 基于纳米材料的水泥浆液粗糙裂隙注浆数值模拟[J]. 矿业研究与开发, 2021, 41(6): 66–71. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202106013.htm LI Xun-gang, TANG Chao, ZHANG Shuai, et al. Numerical simulation of cement slurry grouting in rough cracks based on nano-materials[J]. Mining Research and Development, 2021, 41(6): 66–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202106013.htm
[15] 熊加路. 考虑岩体裂隙粗糙度的动水注浆模拟试验[D]. 徐州: 中国矿业大学, 2017. XIONG Jia-lu. Experimental Investigation on Grouting into Rock Fracture with Flowing Water by Considering its Roughness[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)
[16] 崔溦, 王利新, 江志安, 等. 基于修正立方定律的岩体粗糙裂隙网络注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 2250–2258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108020.htm CUI Wei, WANG Li-xin, JIANG Zhi-an, et al. Numerical simulation of grouting process in rock mass with rough fracture network based on corrected cubic law[J]. Rock and Soil Mechanics, 2021, 42(8): 2250–2258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108020.htm
[17] WANG X C, XIAO F, ZHANG Q S, et al. Grouting characteristics in rock fractures with rough surfaces: apparatus design and experimental study[J]. Measurement, 2021, 184: 109870. doi: 10.1016/j.measurement.2021.109870
[18] 王中才. 微尺度毛细管中不相溶两相驱替特性的实验研究[D]. 武汉: 武汉大学, 2011. WANG Zhong-cai. Experimental Studies on the Characteristics of Immiscible Displacements in Microscale Quartz Capillaries[D]. Wuhan: Wuhan University, 2011. (in Chinese)
[19] ZOU L C, HÅKANSSON U, CVETKOVIC V. Cement grout propagation in two-dimensional fracture networks: impact of structure and hydraulic variability[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 1–10. doi: 10.1016/j.ijrmms.2019.01.004
[20] ZOU L C, HÅKANSSON U, CVETKOVIC V. Two-phase cement grout propagation in homogeneous water-saturated rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 243–249. doi: 10.1016/j.ijrmms.2018.04.017
[21] 李昊宸, 马智, 郭同翠, 等. 毛细管内两相流体驱替规律研究[J]. 科学技术与工程, 2015, 15(36): 155–158, 178. doi: 10.3969/j.issn.1671-1815.2015.36.026 LI Hao-chen, MA Zhi, GUO Tong-cui, et al. The new study of two-phase fluid displacement model[J]. Science Technology and Engineering, 2015, 15(36): 155–158, 178. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.36.026
[22] 张鹏伟, 胡黎明, MEEGODA J N, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm ZHANG Peng-wei, HU Li-ming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm
[23] 柳崎, 索丽敏. 地下岩体内多孔介质中裂隙流运移过程的COMSOL Multiphysics仿真模拟[J]. 系统仿真技术, 2019, 15(3): 184–187, 197. doi: 10.3969/j.issn.1673-1964.2019.03.005 LIU Qi, SUO Li-min. COMSOL multiphysics simulation of fracture flow migration in porous media in underground rock mass[J]. System Simulation Technology, 2019, 15(3): 184–187, 197. (in Chinese) doi: 10.3969/j.issn.1673-1964.2019.03.005
[24] AKHLAGHI AMIRI H A, HAMOUDA A A. Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium[J]. International Journal of Multiphase Flow, 2013, 52(3): 22–34. http://www.onacademic.com/detail/journal_1000036079789310_b9af.html
[25] 刘振亚, 刘建坤, 李旭, 等. PIV技术在非饱和冻土冻胀模型试验中的实现与灰度相关性分析[J]. 岩土工程学报, 2018, 40(2): 313–320. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802015.htm LIU Zhen-ya, LIU Jian-kun, LI Xu, et al. Application of PIV in model tests on frozen unsaturated soils and grayscale correlation analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 313–320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802015.htm
[26] 姜彤, 翟天雅, 张俊然, 等. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120–2126, 2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108008.htm JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, et al. Diametric splitting tests on loess based on particle image velocimetry technique[J]. Rock and Soil Mechanics, 2021, 42(8): 2120–2126, 2140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108008.htm
[27] 祁沛垚, 邓坚, 谭思超, 等. 基于PIV技术的低雷诺数下棒束通道流场研究[J]. 核动力工程, 2021, 42(1): 18–22. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG202101006.htm QI Pei-yao, DENG Jian, TAN Si-chao, et al. Research on flow field in rod bundle channel under low Reynolds number using PIV technique[J]. Nuclear Power Engineering, 2021, 42(1): 18–22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG202101006.htm
[28] 莫洋洋. 法向应力作用下粗糙岩石裂隙变形行为研究[D]. 绍兴: 绍兴文理学院, 2020. MO Yang-yang. Study on Deformation Behavior of Rough-Walled Rock Fracture Subject to Normal Stress[D]. Shaoxing: Shaoxing University, 2020. (in Chinese)
[29] 李博, 崔逍峰, 莫洋洋, 等. 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850–1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm LI Bo, CUI Xiao-feng, MO Yang-yang, et al. Deformation behavior of dislocated sandstone fractures subject to normal stresses[J]. Rock and Soil Mechanics, 2021, 42(7): 1850–1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm
[30] ZOU L C, LI B, MO Y Y, et al. A high-resolution contact analysis of rough-walled crystalline rock fractures subject to normal stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2141–2155. doi: 10.1007/s00603-019-02034-w
[31] LI B, ZHAO Z H, JIANG Y J, et al. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(13): 1431–1449. doi: 10.1002/nag.2365
[32] 陈如梦. 粗糙岩石裂隙中非牛顿流体非线性渗流规律研究[D]. 绍兴: 绍兴文理学院, 2021. CHEN Ru-meng. Study on Nonlinear Seepage Law of Non Newtonian Fluid in Rough Rock Fractures[D]. Shaoxing: Shaoxing University, 2021. (in Chinese)
[33] MITSOULIS E. Numerical simulation of calendering viscoplastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 154(2/3): 77–88. http://www.onacademic.com/detail/journal_1000034089822310_4cc8.html