Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于砂土界面剪切试验的自传感压电土工电缆监测效果评价

王军, 刘志明, 蔡国军, 叶飞龙, 宋小进

王军, 刘志明, 蔡国军, 叶飞龙, 宋小进. 基于砂土界面剪切试验的自传感压电土工电缆监测效果评价[J]. 岩土工程学报, 2023, 45(10): 2023-2031. DOI: 10.11779/CJGE20220891
引用本文: 王军, 刘志明, 蔡国军, 叶飞龙, 宋小进. 基于砂土界面剪切试验的自传感压电土工电缆监测效果评价[J]. 岩土工程学报, 2023, 45(10): 2023-2031. DOI: 10.11779/CJGE20220891
WANG Jun, LIU Zhiming, CAI Guojun, YE Feilong, SONG Xiaojin. Monitoring effects of sensor-enabled piezoelectric geocable based on sand interface shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2023-2031. DOI: 10.11779/CJGE20220891
Citation: WANG Jun, LIU Zhiming, CAI Guojun, YE Feilong, SONG Xiaojin. Monitoring effects of sensor-enabled piezoelectric geocable based on sand interface shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2023-2031. DOI: 10.11779/CJGE20220891

基于砂土界面剪切试验的自传感压电土工电缆监测效果评价  English Version

基金项目: 

国家自然科学基金面上项目 51978534

国家自然科学基金杰出青年基金项目 52325806

详细信息
    作者简介:

    王 军(1980—),男,博士,教授,主要从事土动力学、软土地基处理与岩土工程防灾减灾等方面的研究工作。E-mail: wangjunx9s@163.com

  • 中图分类号: TU432

Monitoring effects of sensor-enabled piezoelectric geocable based on sand interface shear tests

  • 摘要: 近年来,基于分布式的路堤边坡内部变形实时监测技术受到了学者们的广泛关注和研究,然而由于技术、成本、场景等因素的限制,目前还没有一种技术可以完全实现大面积应用。对此,测试了一种基于压电效应和阻抗应变效应的自传感压电土工电缆(sensor-enabled piezoelectric geocable,SPGC),并通过获得SPGC-砂土界面剪切试验中产生的阻抗及电压信号评价其监测效果。试验结果表明,剪切位移-剪应力曲线与剪切位移-归一化阻抗曲线具有良好的对应关系(可检测剪切带土体应变软化的发展);有效值电压随着剪切速率的增大而成正比例关系增大(可量化剪切带的土体位移速率);随着法向应力和相对密实度的增大,有效值电压逐渐增大,归一化阻抗逐渐减小(可反映剪切带土中应力的变化);通过双线性模型描述剪切位移-归一化阻抗的相互关系的效果较好。SPGC可以实现路堤边坡滑坡灾变定位和前兆识别,有望为路堤边坡施工和运维监测提供一种分布式、低成本、自驱动的解决方案。
    Abstract: In recent years, the distributed real-time monitoring technology for internal deformation of bank slopes has received extensive attention and researches by scholars. However, due to the limitations of such factors as technology, cost and scenarios, there is currently no technology that can achieve large-scale applications. In this regard, a sensor-enabled piezoelectric geocable (SPGC) based on the piezoelectric effects and impedance strain effects is tested, and its monitoring effects are evaluated by obtaining the impedance and voltage signals generated in the SPGC-sand interface shear tests. The test results show that the shear displacement-shear stress curve has a good correspondence with the shear displacement-normalized impedance one (the development of strain softening of soil in the shear zone could be detected). The effective voltage increases proportionally with the increase of the shear rate (the displacement rate of soil in the shear zone can be quantitatively calculated). With the increase of the normal stress and relative compactness, the effective voltage gradually increases, and the normalized impedance gradually decreases (the change of stress of soil in the shear zone can be reflected). The shear displacement-normalized impedance correlation is better described by the bilinear model. The SPGC can realize to locate landslide disasters and identifiy their precursors. It may provide a distributed, low-cost, self-driving solution for the construction and operation monitoring of bank slopes.
  • 中国北方地区水资源矛盾突出,同时也是引调水工程分布密集的区域。以整体式(现浇混凝土,混凝土板间设置勾缝)或预制装拼式(以六棱块预制衬砌拼接,勾缝充填砂浆)衬砌渠道为主要结构形式的输水明渠,是区域引调水工程、灌溉工程的主要水资源配送结构形式[1-2]。然而,因其结构单薄、刚度有限,对渠基土的冻胀变形既不能约束也不能很好适应,导致衬砌渠道破坏问题显著[3]

    冻结状态下衬砌结构与土体的相互作用决定了渠道的破坏形式。近年来,结构与冻土界面的剪切特性正逐步获得关注,一些学者通过单元实验建立了接触面剪切特性的本构模型[4-5]。然而,考虑冻土与结构物相互作用的数值化工作相对偏缓,目前大多数数值仿真研究的重点放在渠基土水-热-力耦合效应上,而将衬砌板与表层渠基土视为一个整体,或将衬砌混凝土简化为线弹性材料,这种处理方式就计算而言较为便利,但并不能反映低温条件下衬砌与表层渠基的相互作用所呈现的渠道冻胀特征。

    实践表明,衬砌渠道因其造价低、输水效率高、施工便利易管理等特点,目前仍是经济可行,建管便利的输水结构形式。鉴于此,本文重点考察渠道衬砌与表面渠基土相互作用接触行为的数值模拟方法,兼顾计算便利,为衬砌渠道冻害处治手段提供技术支持。

    对于渠道衬砌与表面渠基土的接触行为,研究表明,当温度、表面粗糙度一定时,冻土与结构接触面抗剪强度与法向应力大体呈线性关系,符合莫尔-库仑强度准则事实上,由于法向冻结力的存在,接触面间的抗剪强度是动态的,与温度密切相关[6]。Zhao等[7]曾建议冻土接触面抗剪强度的表达式为

    τf=tan(φs+φf)σ+c
    (1)

    式中:φs为静摩擦力对应的摩擦角分量,φf为冻结力对应的摩擦角分量,c为黏聚力。文献[7]表明,剪切破坏发生时最终状态下的摩擦角随温度变化较小,而黏聚力随温度变化显著。

    根据抗剪强度的特点,计算中可以将“摩擦行为”分离,并引入反映冻结作用的“黏滞行为”。沿着这一思路,引入一种线弹性“接触黏滞行为”[8],既法线方向产生黏滞力,同时又对切线方向的摩擦作用产生影响,与冻土接触面抗剪强度的作用特点吻合。线弹性的“接触黏滞行为”假设一切破坏都是以线弹性作为起始属性,通过将接触面的名义应力同名义应变联系起来组成弹性矩阵,名义应力t的表达式为

    t={tnts}=[KnnKnsKsnKss]{δnδs}
    (2)
    max{tnt0n,tst0s}=1
    (3)

    式中:t为启动黏滞行为之前的接触面即时应力;t0为单一的法向分离或切向分离行为开始前,界面接触压力的最大值;K为刚度;δ为分离值;角标n,s分别代表法向和切向。

    在黏滞行为启动之后通过弱化材料的刚度来达到对破坏发展的定义,具体来说,可以假定一个损伤变量值D,这个值描述了材料整体的破坏程度并且可以捕捉其他与破坏有关的动态的力学影响。随着破坏的发展,D将会随着接触力的变化逐步从0增长到1。破坏启动后的法向应力可以定义如下:

    tn={(1D)ˉtn(ˉtn0)ˉtn(ˉtn<0)
    (4)

    式中:ˉtn为根据未破坏的即时应变δn计算出的法向应力分量;切向应力分项只需将式(4)中的n替换为s即可。根据有效分离值定义估计准则,损伤变量值D表达式为

    D=δfm(δmaxmδ0m)δmaxm(δfmδ0m)
    (5)

    式中:δm为有效分离值,上标f,max,0分别表示完全失效时、加载历史中峰值、以及损伤开始阶段。根据式(1)~(4),使用时需要定义峰值压力,以及接触面有效分离值δfmδ0m。除此以外,计算时还需给定初始应力参数t0nt0s

    近年来,国内学者已完成了一些关于冻土与结构接触面间的剪切损伤模型的研究,可为上述参数的提取提供参考。例如文献[9]记录的数据,在一定温度水平和法向压力初始值条件下,得到了剪应力-法向位移、应力–应变等有意义的数据。由于样本缺乏,这里仅给出设置方法的建议:即按照式(1)的原则,分别对接触面设置切向摩擦接触和法向黏滞接触。摩擦接触即采用常见的莫尔-库仑本构模型;黏滞接触采用式(2)~(5)给出的定义,其中可将试验记录的界面未发生滑动或脱开前的抗剪强度记为t0s,此时的黏聚力记为初始冻结力tn0。而将位移开始阶段和终止阶段分别记作δ0mδfm表 1给出了设置示例,当法向压力为200 kPa时,给出不同负温下的接触面参数。其中摩擦行为采用μ标记,并设为定值,目的是突出黏滞行为的影响。将上述参数输入通用有限元软件中,得到了该接触模型下的剪切位移–剪应力关系,如图 1所示。可以看出,通过设置“接触黏滞行为”,可以反映接触面在峰值应力前剪应力随温度的下降而提升的特性。

    表  1  不同负温下摩擦及黏滞行为的接触参数取值(法向压力200 kPa)
    Table  1.  Contact parameters of friction and viscous behaviors at different negative temperatures (pressure of 200 kPa)
    温度 接触面行为
    摩擦行为 黏滞行为
    μ t0n/kPa t0s/kPa δ0m/mm δfm/mm
    -2℃ 0.3 65 240 0.15 1.5
    -4℃ 0.3 85 270 0.15 2.0
    -6℃ 0.3 110 300 0.15 2.5
    下载: 导出CSV 
    | 显示表格
    图  1  不同温度、法向应力下剪应力–位移关系的模拟
    Figure  1.  Simulation of shear stress-displacement under pressure of 200 kPa and different temperature

    以新疆北疆地区实际渠道为原型建立计算模型。该渠道总长近130 km,跨度约19.1 m,断面尺寸远小于渠道长度,因此可将渠道冻胀作用视为平面应变问题。设渠基为均质土,取渠道一半为计算模型。考虑到工程实际冻深大约在1.0 m[10],计算时取表面以下3 m为底部边界,整个模型高6 m,宽9.5 m,AE=1 m,DF=5.4 m,HF=4 m,如图 2所示。衬砌材料参数按C20混凝土取值,其中导热系数按低温潮湿条件下取值,有关参数见表 2

    图  2  有限元计算模型示意图
    Figure  2.  Schematic diagram of finite element model
    表  2  混凝土材料参数
    Table  2.  Parameters of concrete materials
    密度/
    (kg·m-3)
    弹性
    模量/Pa
    泊松比 导热系数/
    (W·m·k)
    膨胀
    系数
    2400 2.4×1010 0.2 1.65 1.1×10-5
    下载: 导出CSV 
    | 显示表格

    进一步地,在上图所示建模基础上,将“BD”、“DF”段按上述参数设置黏滞接触,并按μ=tan(0.75φ)设置摩擦接触,而“ED”段(即渠堤、渠底衬砌接触段)仅设置摩擦接触,此时模拟的结构为分段整体式衬砌,记为工况1;同时,将“BD”、“DF”仅设置摩擦工况,记为工况1-1用于对比。在此基础上,追加两种工况,一是整体式衬砌,即将“ED”段作为刚性连接,记为工况2;二是装拼式衬砌,渠堤衬砌按竖直方向每1m设置摩擦接触,记为工况3,用以考察不同衬砌结构形式的破坏特征。表面温度边界设为-4℃。底部温度设为10℃,右边界绝热。上述接触参数的设置均按表 1取值。

    对于土体的冻结、膨胀行为,采用较为常见的“冷胀热缩”处理方法,即弱化水分迁移这一复杂过程,将土体冻胀作用简化为热膨胀的常规材料[11]。有关软件中提供了一种本构模型,既包含弹性行为,也包含热膨胀行为:

    εth=α(θ,fβ)(θθ0)α(θI,fIβ)(θIθ0)
    (6)

    式中α(θ, fβ)为热膨胀系数;无量纲;θ为当前温度;θI为初始温度;fβ为当前场变量值;fIβ为初始场变量值;θ0为参考温度。使用时软件根据用户输入的在某一温度下的膨胀系数α(割线斜率)计算真实膨胀系数α(切线斜率)。根据dεth=α(θ)dθ得到该温度下材料的应变值。为此,计算时需要明确材料的热膨胀系数α,以及土体的名义弹性模量E

    热膨胀系数按渠基土自由冻胀率试验确定。参考蔡正银等[12]的试验结果可知,渠基土在0~-5℃间冻胀率增长明显,而在-5℃后冻胀变形基本稳定,因此,计算中认为温度达-5℃后基土冻胀率η保持不变,而0~-5℃区间内的冻胀率按线性内插确定,根据膨胀系数α=η/Δθ,可求得膨胀系数α。取参考温度(相变温度)θ0=0℃,不同温度下渠基冻土的热膨胀系数如表 3所示。

    表  3  渠基土热膨胀系数设定
    Table  3.  Setting of thermal expansion coefficient of foundation soil of canal
    序号 温度/℃ 热膨胀系数α
    1 0 0
    2 -1 -0.0016
    3 -2 -0.0032
    4 -3 -0.0049
    5 -4 -0.0066
    6 -5 -0.0085
    下载: 导出CSV 
    | 显示表格

    另一方面,可以根据不同温度的渠基冻土单轴抗压强度,确定不同温度的冻土的弹性模量,如表 4所示。

    表  4  渠基土冻结状态下名义弹性模量设定
    Table  4.  Setting of nominal elastic modulus of foundation soil of canal in freezing state
    温度/℃ 0 -5 -10 -15 -20
    弹性模量/MPa 5.5 16.7 43 59 181
    下载: 导出CSV 
    | 显示表格

    计算时采用“先热后力”的计算策略,即先计算模型的温度场,再讲温度场计算结果加载至地应力平衡后的模型中进行应力–应变场计算。

    终态温度场计算结果如图 3所示。渠坡及渠底表层的温度梯度大,随着深度的增大温度梯度越来越小,在接近下边界处温度等值线越接近于水平直线。模拟得到冻深分别为,渠底0.7 m,渠坡1.37 m。接触面的热传导热量按q=k(θA-θB)计算,其中θA为从面温度,θB为主面温度。从图 3中可以看出,主面混凝土衬砌的温度主要受边界条件影响,而衬砌下方基土受渠顶温度边界和接触导热界面共同影响,因此造成了不同位置处衬砌上下表面温度不一致(表现为渠顶表层基土温度较渠坡、渠底更低)的现象。

    图  3  渠基温度场示意
    Figure  3.  Temperature fields of model in terminal state

    工况1、工况1-1的衬砌下表面所受法向冻胀位移及接触力分布如图 4所示。以沿衬砌外法线和方向为正。从看出工况1中渠顶表面、渠坡接近渠底1/3处以及坡脚附近底板一侧存在较大的法向接触力,而底板中部法向接触力较小。另一方面,工况1处渠坡板与渠底板发生了脱开,导致该点处法向接触力为0;渠坡板两端所受接触力为负,说明牵引黏滞力发挥了作用,且由于顶部温度较低,这种牵引作用更大;黏滞冻结力的存在使渠坡板两端受到约束,从而产生挤压作用,导致渠坡中部出现较大的冻胀力,但未出现滑移。渠底板靠近坡脚处呈现为冻胀力,而渠底板中部呈现为冻结力,导致渠底中部衬砌与基土共同上抬而在坡脚位置处相互挤压。设置黏结行为的工况1的模拟结果与实践相符[13],反映了渠道衬砌发生冻胀破坏的力学特性。相比较而言,工况1-1中渠坡板均表现为正的冻胀力;渠顶处的法向冻胀力与工况1-1相当,渠坡中部附近冻胀力偏小,而在坡脚处由于挤压作用出现了负的冻胀力。

    图  4  衬砌间法向位移及接触力分布
    Figure  4.  Distribution of normal displacement and contact force between linings

    切向剪应力如图 5所示。以沿衬砌下表面渠底至渠顶为正方向,工况1中上方渠坡剪应力指向渠底,而下方渠坡剪应力指向渠顶,在渠坡板中部靠近1/3处形成分界,导致这一部位衬砌发生较大的法向位移,符合工程原型的破坏特征。相比较而言,工况1-1剪应力方向始终由渠底指向渠顶,且渠坡中部剪应力偏小,没有形成对渠道衬砌的约束作用,无法模拟渠道衬砌冻胀破坏的实际受力特征。

    图  5  衬砌切向剪应力分布
    Figure  5.  Distribution of tangential shear stress of linings

    工况2——整体式衬砌,渠道法向冻胀位移以及衬砌切向剪应力分布如图 6所示。从冻胀位移分布中可以看出,衬砌最大位移出现在渠顶表面,为2.5 cm。渠道衬砌任意位置处均未脱开,渠底板对渠坡板的挤压作用消失,接触界面的黏滞力使渠道衬砌与基土一同变形,这种现象对渠道衬砌抵抗冻胀破坏反而是有利的。然而,根据接触面剪应力曲线,渠道坡脚处存在剪应力突变,因此该处为此类破坏情形的薄弱点。

    图  6  整体式衬砌间法向位移及衬砌剪应力分布
    Figure  6.  Distribution of normal displacement and shear stress monolithic linings

    虽然在整体性较好的渠道中,接触界面的黏滞力有利于防止衬砌破坏,但黏滞力较大的接触面基土含水量往往较大,容易诱发水胀破坏[14],渠道衬砌防渗仍是防治衬砌破坏的必要措施。

    工况3——装拼式衬砌,衬砌法向冻胀位移如图 7所示。渠底板冻胀位移较小而渠坡板冻胀量较大。渠底板各位置的法向冻胀量基本相同,表现为整体上抬,但上抬位移较小,仅为0.35 cm;渠坡板最大法向位移位于渠顶,为4.0 cm,法向位移沿渠顶至渠底方向逐渐减小,并呈“阶梯”状,说明渠坡衬砌板间均出现了一定程度的相对位移。根据剪应力分布可知,衬砌间连接处两侧的接触压力和剪应力均存在突变,且突变幅值沿渠道自上而下衰减,而位于衬砌间接触点的接触压力和剪应力均为0。对于单个衬砌,靠近渠底一侧的接触力表现为冻结力,而另一侧表现为冻胀力。单个衬砌除受冻结力和冻胀力外,还受衬砌间接触摩擦力约束,最上方渠坡板顶端临空,抵抗冻胀能力最为薄弱,因此冻胀位移最大;下方各衬砌板同时受到两侧衬砌的摩擦约束,由于基土冻胀作用逐渐减弱,因此约束作用逐渐增强,最终呈现出“独立”地、“阶梯”状的位移衰减现象。

    图  7  装拼式衬砌法向位移及衬砌剪应力分布
    Figure  7.  Distribution of normal displacement and shear stress of fabricated linings

    本文采用数值计算方法分析了寒冷地区典型衬砌渠道的冻胀破坏特征,得到以下2点结论。

    (1)充分考虑渠道衬砌与渠基土间的冻结力,通过设置“接触黏滞行为”模拟冻结力,并以破坏标量值判定混凝土衬砌板与冻土之间是否会发生脱开现象;有效分离值、初始应力等参数可根据冻结接触面剪切试验确定

    (2)对于渠底板和渠坡板间存在接触,而渠坡板整体性较好的衬砌渠道,破坏形式表现为渠坡板隆起破坏,最大隆起位于渠坡板靠近渠底的1/3处。对于整体式衬砌渠道,当冻结强度发挥作用时,渠道衬砌会与基土共同上抬;而当冻结强度未发挥作用时,渠道衬砌表现为整体上抬破坏;对于装拼式渠道,渠坡板上方的衬砌易发生坍塌、脱落破坏,衬砌位移的大小取决于基土的冻胀位移以及衬砌间的摩擦强度。

    本文有关计算均在已有研究成果基础上得到。如能有足够的试验结果,得到对应负温条件下渠基土与衬砌接触面的剪切强度,可使研究对象的计算结果更加准确。

  • 图  1   SPGC内部阻抗

    Figure  1.   Internal impedances of SPGC

    图  2   试验仪器

    Figure  2.   Test apparatus

    图  3   SPGC构造

    Figure  3.   Structure of SPGC

    图  4   SPGC滑坡监测原理

    Figure  4.   Principle of landslide monitoring of SPGC

    图  5   SPGC试样布置

    Figure  5.   Sample arrangement of SPGC

    图  6   SPGC拉伸应力-应变-归一化阻抗曲线

    Figure  6.   Tensile stress-strain-normalized impedance curves of SPGC

    图  7   不同剪切速率下的剪切位移-剪应力-归一化阻抗曲线

    Figure  7.   Shear displacement-shear stress-normalized impedance curves under different shear rates

    图  8   SPGC的受力及变形状态

    Figure  8.   Stress and deformation states of SPGC

    图  9   不同剪切速率下的竖向位移-剪切位移曲线

    Figure  9.   Vertical displacement-shear displacement curves under different shear rates

    图  10   不同剪切速率下的剪切位移-电压曲线

    Figure  10.   Shear displacement-voltage curves under different shear rates

    图  11   剪切速率-有效值电压线性回归曲线

    Figure  11.   Linear regression curves of shear rate-RMS voltage

    图  12   不同法向应力下的剪切位移-剪应力-归一化阻抗曲线

    Figure  12.   Shear displacement-shear stress-normalized impedance curves under different normal stresses

    图  13   SPGC剪断位置

    Figure  13.   Fracture location of SPGC

    图  14   不同法向应力下的剪切破坏强度包络线

    Figure  14.   Envelope curves of shear failure strength under different normal stresses

    图  15   不同法向应力下的剪切位移-电压曲线

    Figure  15.   Shear displacement-voltage curves under different normal stresses

    图  16   不同相对密实度下的剪切位移-剪应力-归一化阻抗曲线

    Figure  16.   Shear displacement-shear stress-normalized impedance curves under different relative compactnesses

    图  17   不同相对密实度下的剪切位移-电压曲线

    Figure  17.   Shear displacement-voltage curves under different relative compactnesses

    表  1   SPGC性能参数

    Table  1   Performance parameters of SPGC

    材料特性 符号
    压电电荷常数/(pC·N-1) d33 20
    电容/(pF·m-1) C 1400
    介电损耗 D 0.08
    使用温度/℃ T -20~70
    拉伸强度/MPa σT 50
    断裂伸长率/% δ 45
    下载: 导出CSV

    表  2   砂土的物理性质指标

    Table  2   Physical properties of sand

    指标
    相对质量密度Gs 2.71
    最大孔隙比emax 0.66
    最小孔隙比emin 0.39
    D60/mm 0.66
    D30/mm 0.24
    D10/mm 0.11
    不均匀系数Cu 5.991
    曲率系数Cc 1.006
    下载: 导出CSV

    表  3   剪切试验方案

    Table  3   Schemes of shear tests

    试验方案 剪切速率/
    (mm·min-1)
    法向应
    力/kPa
    相对密实
    度/%
    3.1 1, 20, 50, 100 50 50
    3.2 20 50, 100, 150, 200 50
    3.3 20 50 25, 50, 75
    下载: 导出CSV

    表  4   不同剪切速率下的双线性模型

    Table  4   Bilinear models under different shear rates

    剪切速率Vs/
    (mm·min-1)
    单调剪切阻抗系数及拟合相关系数
    a1 b1 R21 a2 b2 R22
    1 -0.0036 1.00005 0.97 -0.000056 0.9884 0.82
    20 -0.0021 1.00121 0.94 -0.000052 0.9926 0.90
    50 -0.0014 0.99978 0.99 -0.000147 0.9902 0.99
    100 -0.0022 0.99953 0.90 -0.000138 0.9915 0.94
    下载: 导出CSV

    表  5   不同法向应力下的双线性模型

    Table  5   Bilinear models under different normal stresses

    法向应
    力/kPa
    单调剪切阻抗系数及拟合相关系数
    a1 b1 R21 a2 b2 R22
    50 -0.0025 1.0014 0.94 -0.000048 0.9923 0.80
    100 -0.0043 1.0032 0.98 -0.000094 0.9780 0.91
    150 -0.0048 1.0037 0.98 -0.000687 0.9704 0.98
    200 -0.0038 1.0040 0.98
    下载: 导出CSV
  • [1] 王淳讙, 黄治峯, 赖世屏, 等. 边坡生命周期防灾监测信息整合及可视化云平台数据库建置研究[J]. 岩土工程学报, 2020, 42(1): 188-194. doi: 10.11779/CJGE202001022

    WANG Chwenhuan, HUANG Chihfong, LAI Shihping, et al. Cloud database platform of integrated visualization for life-cycle prevention and safety monitoring of slope hazards[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 188-194. (in Chinese) doi: 10.11779/CJGE202001022

    [2] 杨春宝, 朱斌, 孔令刚, 等. 水位变化诱发粉土边坡失稳离心模型试验[J]. 岩土工程学报, 2013, 35(7): 1261-1271. http://www.cgejournal.com/cn/article/id/15100

    YANG Chunbao, ZHU Bin, KONG Linggang, et al. Centrifugal model tests on failure of silty slopes induced by change of water level[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1261-1271. (in Chinese) http://www.cgejournal.com/cn/article/id/15100

    [3] 王家超, 钱建固, 张甲峰, 等. 往复移动荷载下超固结软黏土重力模型试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 85-88. doi: 10.11779/CJGE2019S2022

    WANG Jiachao, QIAN Jiangu, ZHANG Jiafeng, et al. Gravity model testing overconsolidated soft clay under repeated moving loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 85-88. (in Chinese) doi: 10.11779/CJGE2019S2022

    [4] 徐靓, 程刚, 朱鸿鹄. 基于空天地内一体化的滑坡监测技术研究[J]. 激光与光电子学进展, 2021, 58(9): 98-111.

    XU Liang, CHENG Gang, ZHU Honghu. Research review of landslide monitoring methods based on integration of space-air-ground-interior[J]. Laser & Optoelectronics Progress, 2021, 58(9): 98-111. (in Chinese)

    [5]

    CUI X Z, WANG Y L, LIU K W, et al. A simplified model for evaluating the hardening behaviour of sensor-enabled geobelts during pullout tests[J]. Geotextiles and Geomembranes, 2019, 47(3): 377-388. doi: 10.1016/j.geotexmem.2019.01.007

    [6]

    SHI S, ZHANG Z, ZHU Z, et al. DFOS Applications to geo-engineering monitoring[J]. Photonic Sensors, 2021(2): 158-186.

    [7] 梁志刚, 陈云敏, 陈仁朋, 等. 同轴电缆电磁波反射技术监测滑坡研究[J]. 岩土工程学报, 2005, 27(4): 453-458. doi: 10.3321/j.issn:1000-4548.2005.04.018

    LIANG Zhigang, CHEN Yunmin, CHEN Renpeng, et al. Study on applications of coaxial-cable electromagnetic wave reflection technique in monitoring slope stability[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 453-458. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.04.018

    [8]

    HATAMI K, GRADY B, ULMER M. Sensor-enabled geosynthetics: use for conducting carbon net works as geosynthetic sensors[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 863-874. doi: 10.1061/(ASCE)GT.1943-5606.0000062

    [9]

    YAZDANI H, HATAMI K. Sensor-enabled geogrids for stabilization and performance monitoring of earth structures: state of development[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(4): 1-7.

    [10]

    CUI X Z, JIN Q, CUI S Q, et al. Laboratory tests on the engineering properties of sensor-enabled geobelts (SEGB)[J]. Geotextiles and Geomembranes, 2018, 46(1): 66-76. doi: 10.1016/j.geotexmem.2017.10.004

    [11] 王艺霖. 基于传感型土工带多元信息的路基内部灾变定位、前兆辨识及预警方法研究[D]. 济南: 山东大学, 2020.

    WANG Yilin. Study on Positioning, Precursor Ldentification and Early Warning Methods for the Internal Failure of Subgrade Based on Multiple Information from Sensor-Enabled Geobelts[D]. Jinan: Shandong University, 2020. (in Chinese)

    [12]

    CUI X, WANG Y, LIU K W, et al. A strain softening model evaluating geobelt-clay interaction validated by laboratory tests of sensor-enabled geobelts[J]. Canadian Geotechnical Journal, 2019, 57(3): 354-365.

    [13]

    PMA B, ACL A, LMA B. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications[J]. Progress in Polymer Science, 2014, 39(4): 683-706. doi: 10.1016/j.progpolymsci.2013.07.006

    [14]

    ZHANG X, XU J W, YAN R Q. A structural impedance measurement method by using polyvinylidene fluoride as actuator and sensor[J]. The Review of Scientific Instruments, 2020, 91(8): 085111. doi: 10.1063/5.0016798

    [15] 应梦杰, 王军, 刘飞禹. 循环剪切作用下砾石-格栅界面颗粒破碎特性研究[J]. 岩石力学与工程学报, 2021, 40(7): 1484-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107014.htm

    YING Mengjun, WANG Jun, LIU Feiyu. Experimental study on particle breakage of gravel-geogrid interfaces under cyclic shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1484-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107014.htm

    [16] 刘润, 李成凤, 练继建, 等. 筒型基础-砂土地基动力响应的离心振动台试验研究[J]. 岩土工程学报, 2020, 42(5): 817-826. doi: 10.11779/CJGE202005003

    LIU Run, LI Chengfeng, LIAN Jijian, et al. Centrifugal shaking table tests on dynamic response of bucket foundation-sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 817-826. (in Chinese) doi: 10.11779/CJGE202005003

图(17)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-17
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2023-09-30

目录

/

返回文章
返回