Influences of Na2SO4 solution on physical and mechanical properties of granite residual soil
-
摘要: 花岗岩残积土所处水化学环境的变化会影响其物理力学性质和微观结构。为了探索不同浓度Na2SO4溶液浸泡7/14 d对花岗岩残积土物理力学性质的影响,利用自行研制的水土化学循环系统开展了对其电阻率、界限含水率、压缩性、抗剪强度、矿物成分和微观结构变化规律的研究。试验表明:Na2SO4溶液浓度增大可以使其电阻率和界限含水率减少。随着盐浓度增大,浸泡7 d时花岗岩残积土的压缩性先上升后下降。当浸泡14 d时,花岗岩残积土的压缩性整体呈上升趋势。抗剪强度、黏聚力和内摩擦角随着盐浓度上升整体先减小后增大。浸泡14 d时,花岗岩残积土的内摩擦角随着盐浓度上升整体增大。SEM图像显示花岗岩残积土经Na2SO4溶液浸泡后呈絮凝结构土颗粒明显粗化。研究结果可为Na2SO4溶液影响土体后其物理力学性质的变化规律提供一定的参考价值。Abstract: The change of hydrochemical environment of granite residual soil will affect its physical and mechanical properties and microstructure. In order to explore the effects of immersion in Na2SO4 solution with different concentrations for 7 and 14 days on the physical and mechanical properties of the granite residual soil, the self-developed water and soil chemical cycle system is used to study the change rules of its resistivity, boundary moisture content, compressibility, shear strength, mineral composition and microstructure. The tests show that increasing the concentration of Na2SO4 solution can reduce its resistivity and limit moisture content. With the increase of the salt concentration, the compressibility of the granite residual soil increases first and then decreases after soaked for 7 days. When soaked for 14 days, the compressibility of the granite residual soil exhibits an overall upward trend. The shear strength, cohesion and internal friction angle first decrease and then increase with the increase of the salt concentration. After soaked for 14 days, the internal friction angle of the granite residual soil increases as the salt concentration increases. The SEM images show that the granite residual soil is in flocculation structure after soaked in Na2SO4 solution, and the soil particles are obviously coarsened. The research results may provide a certain reference value for the change laws of physical and mechanical properties of Na2SO4 solution after it affects the soil.
-
0. 引言
北疆供水渠道在进行渠道设计时,不仅仅要考虑经济最优和保证流量最优的问题,还需要考虑渠道的冬季冻胀破坏。梯形渠道占中国输水渠道的比例较大,应用较广。因此,梯形渠道的冻胀问题受到了北方寒区广泛关注。王正中等[1-2]对梯形渠道冻胀模型进行了理论分析,将梯形渠道考虑为在切向冻结力、法向冻胀力的以及衬砌板约束下的简支梁,王正中等[3]、刘旭东等[4]、李爽等[5]用数值模拟的方法模拟梯形断面形式下冻胀的规律,得到了温度场,位移场沿着渠道分布情况。
本文主要研究不同梯形断面情况下,以北疆某供水工程总干渠退水渠段梯形渠道为例,对该渠道用comsol进行数值模拟,对不同的断面渠道进行参数化模拟,得到最佳参数范围,并结合水力最佳断面,得到双优断面形式,为寒区渠道设计提供参考。
1. 力学模型的建立
1.1 基本假设
渠基土冻结时,土体、水和冰之间的相互作用的微观结构及动态过程相当复杂,目前很难准确模拟整个冻胀过程。为了便于分析,对其进行适当的简化,以便抓住影响冻结过程中及冻胀变形的主要特征,主要假设如下[6]:①根据现场及室内试验研究,假设冻土是均匀连续各向同性体;②尽管土的冻胀与其温度、水分、土质密切相关,对具体工程当水分及土壤条件确定时土体最终冻胀主要取决于温度,将水分迁移对冻土的体积影响,以线膨胀系数表达;③根据试验研究假定相变温度在同一种土中和同种外力条件下为常值,即暂取相变温度为0℃[7];④由于渠道为细长结构,不考虑长方向上土颗粒对温度的影响,选取平面应变问题进行模拟。
1.2 热传导方程
根据以上假设,将温度热传递视为二维瞬态热传递的过程,建立二维热传导控制方程:
(λx∂2T∂x2)+(λy∂2T∂y2)=ρc∂T∂t。 (1) 式中T为温度;λx,λy分别是冻土沿x,y方向的导热系数;ρ为土体的密度;c为土体的比热容;t为时间。
1.3 本构方程
冻土属于冷胀热缩材料,冻土在冻结过程中水冻结成冰,除了原位水冻结体积膨胀,还有从未冻结区向冻结区迁移的水分冻结成冰,本文将原位水以及迁移水冻结成冰的体积膨胀以关于温度T的函数的线膨胀系数表示。因此,土体的本构方程可以表示为
ϵx=σxE−μσyE+α(T−Tref) ,ϵy=σyE−μσxE+α(T−Tref) ,γxy=2(1+μ)Eτxy 。} (2) 式中εx,εy为正应变;γxy为剪应变;σx、σy为正应力;τxy为剪应力;E为弹性模量;μ为泊松比,α为混凝土或者冻土自由冻胀时的热膨胀系数;T为计算温度;Tref为参考温度。
2. 计算模型
2.1 原型概况
本文选择北疆地区某输水渠道退水渠段的梯形渠道(图 1)为研究对象,原型渠道的基本情况如表 1,2所示,并对该模型渠道进行了冻胀模拟分析计算,因原型渠道各部位坡向,土质,水分不同,在模型边界设置时对阴阳破和渠堤分别对温度和土体冻胀率赋值。
表 1 渠道各部位的表面温度以及冻结期Table 1. Surface temperatures and freezing periods of various parts of canal部位 月平均表面温度/(℃) 冻结期、(月-日) 12月 1月 2月 阴坡 -14.92 -18.85 -10.72 11-27—02-27 渠底 -14.56 -16.22 -9.15 11-27—02-26 阳坡 -12.55 -14.75 -10.54 11-27—02-27 表 2 原型渠道基本情况Table 2. Basic information of prototype canal部位 渠床
土质基土干密度/(g·cm-3) 冻深h/cm 冻胀量Δh/cm 冻胀率η/% 阴坡 砂砾石 1.80 171 5.0 2.92 渠底 159 4.4 2.77 阳坡 146 3.7 2.53 2.2 有限元模型
有限元计算模型为:①原型梯形断面渠道冻胀数值模拟;②梯形断面渠道冻胀“参数化”断面渠道数值模拟。
有限元模型如图 2所示,选取各表面温度接近原型渠道,渠道两边设置为热绝缘边界,下边界为固定温度边界取10℃,阴坡边界温度取冻结期平均值-14.8℃,渠底温度取-13.3℃,阳坡温度为-12.6℃。几何模型如图 2所示,渠底长2.0 m,渠坡的横向长度为3.75 m,坡比为1.5,基础底向下取2.5 m,左右边界取0.75 m。模型将衬砌板与冻土作为一个整体进行数值模拟,力学的边界设置时,左右边界设置为辊支撑,底部设置指定位移0。
2.3 参数取值
参考文献[5]中线膨胀系数按照η/Tmin取值,η为冻胀率,Tmin为相应部位月平均表面温度的最小值。由式(2),将T-Tref看成1℃,那么可以将线膨胀系数α考虑跟温度Tmin相关的函数,数值上与冻胀率相等。未冻土与混凝土的导热系数参考文献[3],冻土的导热系数与土体的未冻水含量相关,冻土融土导热系数比与未冻水含量相关[9],模型渠道的未冻水含量选取19.4%,因此冻土的导热系数为未冻土导热系数的0.9倍。
3. 计算结果分析
3.1 温度场
图 3可以看出:接近于渠底的温度分布接近于一组平行的直线,0℃等温线以上,由于未冻水冻结导致剧烈相变,该区域导热系数小,因此等温线较密集,温度梯度比较小;0℃等温线以下,导热系数较大,等温线较稀疏。阴坡冻深为162 cm,渠底冻深为146 cm,阳坡的冻深为141 cm。与表 3模型试验较符合,最大相对误差为8.2%。
表 3 材料热力学参数Table 3. Thermodynamic parameters of materials介质 弹性模量E/Pa 泊松比ν 导热系数λ/(W·m-1·℃) 线膨胀系数α/℃-1 混凝土 2.4×1010 0.167 1.580 1.1×10-5 冻土 4.6×107 0.330 1.188[9] 阴坡2.92%、渠底2.77%、阳坡2.53% 未冻土 1.5×107 0.375 1.320 0 3.2 位移场
如图 4所示的是模拟得到的结果与试验结果进行对比,模型试验结果冻胀量边坡较大,渠底较小。模型试验的冻胀量整体比模拟冻胀量大,因为模型试验所用的衬砌板受到边坡的约束较大,且衬砌板厚度小于模拟设定厚度。模拟得到渠底冻胀量比较平缓而试验得到的渠底中间部位冻胀量大而两边小,模拟设定的衬砌板是整体现浇型板,在冻胀力的作用下容易产生整体变形;而模型试验的衬砌板分布较为离散。
3.3 “参数化”位移场模拟结果
根据梯形断面的设计规范要求,应满足:①渠道边坡系数应不小于允许最小边坡系数,应不大于允许最大边坡系数,1≤m≤2。②渠道的宽深比应满足规范给定的要求,0.8 < b/h < 3.5。
根据要求,“参数化”分析模拟了宽深比β一定时,不同边坡比的渠道断面冻胀量情况;和边坡比一定时,不同宽深比的渠道断面冻胀量情况。
由图 5,宽深比一定时,边坡比越小,渠坡的法向冻胀量越大;m=2时,左侧阴坡法向冻胀量最大为5.2 cm,阳坡为1.7 cm。m=1时,阴坡法向冻胀量最大值为3.3 cm。由图 6,边坡比一定时,宽深比对法向冻胀量影响不大。
4. 水力最佳断面
从设计角度考虑水力最佳断面通常是指过水流量一定,所要求的过水断面面积最小,也就是所需要的材料最少,施工且最方便[12]。或者是过水断面面积一定,所通过的流量最大。
考虑最小冻胀量,所以采用边坡比为2的冻胀断面。水力学中考虑流量一定,过水断面面积最小可采用以下公式计算宽深比[13]:
β=2(√1+m2−1)。 (3) 将相关参数代入式(3),可得到考虑水力冻胀最优宽深比为2.472。
5. 结语
本文利用comsol有限元软件,对北疆供水渠道以及渠基土冻胀破坏规律进行有限元分析,与试验数据对比,基本与试验数据相似。对不同坡比以及不同宽深比的渠道进行有限元模拟分析,发现坡比影响冻胀量的大小,坡比越大,渠道冻胀量越小。理论分析受力情况易得坡比越大越能释放变形,符合实际。再结合水力最佳断面的公式,可以得到最佳宽深比。最终的断面形式能有效的防止冻胀,且满足水力断面要求。为北疆地区渠道防冻胀断面设计提供了理论支撑。
-
表 1 花岗岩残积土的基本物理参数
Table 1 Basic physical parameters of granite residual soil
天然密度/
(g·cm-3)相对质量密度 天然含水率/% 液限/
%塑限/
%塑性指数 1.95 2.54 16.20 39.4 23.9 15.5 表 2 试验条件
Table 2 Test conditions
工况 Na2SO4溶液浓度/(mol·L-1) 浸泡时间/d 1 0 7 2 0 14 3 0.1 7 4 0.1 14 5 0.3 7 6 0.3 14 7 0.5 7 8 0.5 14 9 1.0 7 10 1.0 14 -
[1] 安然, 孔令伟, 黎澄生, 等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报, 2020, 39(9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm AN Ran, KONG Lingwei, LI Chengsheng, et al. Strength attenuation and microstructure damage of granite residual soils under hot and rainy weather[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1902-1911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm
[2] 安然, 孔令伟, 柏巍, 等. 单轴荷载下残积土的电阻率损伤模型及干湿循环效应[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3159-3167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1058.htm AN Ran, KONG Lingwei, BAI Wei, et al. The resistivity damage model of residual soil under uniaxial load and the law of drying-wetting effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3159-3167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1058.htm
[3] 黎澄生, 安然, 舒荣军, 等. 花岗岩残积土初期崩解规律与数学形态学方法近似模拟[J]. 岩石力学与工程学报, 2020, 39(4): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004019.htm LI Chengsheng, AN Ran, SHU Rongjun, et al. Initial-disintegration analysis of granite residual soil and approximate simulation of mathematical morphology[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 845-854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004019.htm
[4] DI MAIO C, SCARINGI G. Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface[J]. Engineering Geology, 2016, 200: 1-9. doi: 10.1016/j.enggeo.2015.11.007
[5] ZHANG F, WANG G, KAMAI T, et al. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution [J]. Engineering Geology, 2013, 155: 69-79. doi: 10.1016/j.enggeo.2012.12.018
[6] CAKAR E, YUKSELEN-AKSOY Y. Ageing effect on compressibility, permeability and shear strength of clayey soils exposed to salt solutions[J]. Geomechanics and Engineering, 2021, 25: 245-251.
[7] KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46: 177-189. doi: 10.1139/T08-120
[8] 张芹, 颜荣涛, 韦昌富, 等. 孔隙溶液对粉质黏土界限含水率的影响[J]. 岩土力学, 2015, 36(增刊1): 558-562, 608. ZHANG Qin, YAN Rongtao, WEI Changfu, et al. Effects of pore fluids on consistency limits of silty clay[J]. Rock and Soil Mechanics, 2015, 36(S1): 558-562, 608. (in Chinese)
[9] 于海浩, 孙德安. 不同溶液下弱膨胀土的抗剪强度研究[J]. 地下空间与工程学报, 2019, 15(2): 423-427, 451. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201902016.htm YU Haihao, SUN Dean. Shear strength of weakly expansive soils in different solution[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 423-427, 451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201902016.htm
[10] 于海浩, 韦昌富, 颜荣涛, 等. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. doi: 10.11779/CJGE201503023 YU Haihao, WEI Changfu, YAN Rongtao, et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. (in Chinese) doi: 10.11779/CJGE201503023
[11] 杨秀娟, 武雷杰, 刘惹梅, 等. 酸性溶液对重塑黄土工程性质的影响研究[J]. 人民黄河, 2020, 42(7): 122-125, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202007028.htm YANG Xiujuan, WU Leijie, LIU Remei, et al. Effect of acid solution on engineering properties of remodeled loess[J]. Yellow River, 2020, 42(7): 122-125, 135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202007028.htm
[12] 杨秀娟, 汪源, 樊恒辉, 等. 孔隙溶液酸碱度对重塑黄土工程性质的影响研究[J]. 长江科学院院报, 2018, 35(9): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809020.htm YANG Xiujuan, WANG Yuan, FAN Henghui, et al. Effects of pore solution's pH value on engineering properties of remolded loess[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809020.htm
[13] 姚传芹, 韦昌富, 马田田, 等. 孔隙溶液对膨胀土力学性质影响[J]. 岩土力学, 2017, 38(增刊2): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm YAO Chuanqin, WEI Changfu, MA Tiantian, et al. Effects of pore solution on mechanical properties of expansive soil[J]. Rock and Soil Mechanics, 2017, 38(S2): 116-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm
[14] 郑新江, 徐永福. 盐溶液饱和高庙子膨润土的强度特性[J]. 岩土工程学报, 2021, 43(4): 783-788. doi: 10.11779/CJGE202104022 ZHENG Xinjiang, XU Yongfu. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 783-788. (in Chinese) doi: 10.11779/CJGE202104022
[15] 梁健伟, 房营光, 陈松. 含盐量对极细颗粒黏土强度影响的试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3821-3829. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2080.htm LIANG Jianwei, FANG Yingguang, CHEN Song. Experimental research on effect of salt content on strength of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3821-3829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2080.htm
[16] 杨德欢, 颜荣涛, 韦昌富, 等. 粉质黏土强度指标的水化学敏感性研究[J]. 岩土力学, 2016, 37(12): 3529-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612023.htm YANG Dehuan, YAN Rongtao, WEI Changfu, et al. A study of water chemical sensitivity of strength indices of silty clay[J]. Rock and Soil Mechanics, 2016, 37(12): 3529-3536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612023.htm
[17] 汤连生, 刘增贤, 黄国怡, 等. 红土中含铁离子物质的化学行为与力学效应[J]. 水文地质工程地质, 2004, 31(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200404007.htm Tang Liansheng, Liu Zengxian, Huang Guoyi, et al. Chemical action and mechanical effect of the material with abundant iron ion in red soils[J]. Hydrogeology & Engineering Geology, 2004, 31(4): 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200404007.htm
[18] 刘懿韬. 海水对花岗岩残积土的工程特性影响及土体加固机理研究[D]. 广州: 华南农业大学, 2018. LIU Yitao. Influence of Seawater on Engineering Properties of Granite Residual Soil and Soil Reinforcement Mechanism[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
[19] 肖桂元, 朱杰茹, 徐光黎, 等. NaCl溶液引起红黏土界限含水率变化的试验研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3314-3321. XIAO Guiyuan, ZHU Jieru, XU Guangli, et al. Experimental study on change of limit water content of red clay caused by NaCl solution[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3314-3321. (in Chinese)
[20] 雷杰, 于海浩, 蒋仕清, 等. 氯化纳溶液对铝土矿矿泥的沉降影响[J]. 矿业研究与开发, 2021, 41(9): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202109027.htm LEI Jie, YU Haihao, JIANG Shiqing, et al. Effect of sodium chloride solution on sedimentation of bauxite slime[J]. Mining Research and Development, 2021, 41(9): 145-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202109027.htm
[21] 汤连生. 略论岩土化学力学[J]. 中山大学学报(自然科学版), 2002, 41(3): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200203022.htm TANG Liansheng. On chemical mechanics for rock and soil[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(3): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200203022.htm
[22] 汤连生, 张鹏程, 王思敬. 水-岩化学作用之岩石断裂力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(6): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 822-827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm
[23] 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39(4): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200004023.htm TANG Liansheng. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4): 104-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200004023.htm
[24] 江南. 孔隙水中阳离子对海相黏性土结合水的影响及其力学效应研究[D]. 吉林: 吉林大学, 2021. JIANG Nan. Study on the Influence of Cations in Pore Water on the Bound Water of Marine Cohesive Soil and Its Mechanical Effects[D]. Jilin: Jilin University, 2021. (in Chinese)
[25] 梁埔源, 刘玉坤, 刘会强. NaCl溶液对宁明膨胀土强度指标的影响[J]. 土工基础, 2017, 31(5): 651-654. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201705029.htm LIANG Puyuan, LIU Yukun, LIU Huiqiang. Effect of NaCl solution on the strength parameters of Ningming expansive soil[J]. Soil Engineering and Foundation, 2017, 31(5): 651-654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201705029.htm
[26] 张彤炜, 邓永锋, 刘松玉, 等. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. doi: 10.11779/CJGE201412014 ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, et al. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. (in Chinese) doi: 10.11779/CJGE201412014
[27] 于海浩. 不同孔隙溶液和温度下的膨胀土力学特性[D]. 上海: 上海大学, 2018. YU Haihao. Mechanical Properties of Expansive Soil under Different Pore Solutions and Temperatures[D]. Shanghai: Shanghai University, 2018. (in Chinese)
[28] LIU C, TANG C-S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.
[29] 郭秀军, 刘涛, 贾永刚, 等. 土的工程力学性质与其电阻率关系实验研究[J]. 地球物理学进展, 2003, 18(1): 151-155. GUO Xiujun, LIU Tao, JIA Yonggang, et al. The study of the relationship between engineering mechanical properties and resistivity of soils[J]. Progress in Geophysics, 2003, 18(1): 151-155. (in Chinese)
-
其他相关附件