Influences of Na2SO4 solution on physical and mechanical properties of granite residual soil
-
摘要: 花岗岩残积土所处水化学环境的变化会影响其物理力学性质和微观结构。为了探索不同浓度Na2SO4溶液浸泡7/14 d对花岗岩残积土物理力学性质的影响,利用自行研制的水土化学循环系统开展了对其电阻率、界限含水率、压缩性、抗剪强度、矿物成分和微观结构变化规律的研究。试验表明:Na2SO4溶液浓度增大可以使其电阻率和界限含水率减少。随着盐浓度增大,浸泡7 d时花岗岩残积土的压缩性先上升后下降。当浸泡14 d时,花岗岩残积土的压缩性整体呈上升趋势。抗剪强度、黏聚力和内摩擦角随着盐浓度上升整体先减小后增大。浸泡14 d时,花岗岩残积土的内摩擦角随着盐浓度上升整体增大。SEM图像显示花岗岩残积土经Na2SO4溶液浸泡后呈絮凝结构土颗粒明显粗化。研究结果可为Na2SO4溶液影响土体后其物理力学性质的变化规律提供一定的参考价值。Abstract: The change of hydrochemical environment of granite residual soil will affect its physical and mechanical properties and microstructure. In order to explore the effects of immersion in Na2SO4 solution with different concentrations for 7 and 14 days on the physical and mechanical properties of the granite residual soil, the self-developed water and soil chemical cycle system is used to study the change rules of its resistivity, boundary moisture content, compressibility, shear strength, mineral composition and microstructure. The tests show that increasing the concentration of Na2SO4 solution can reduce its resistivity and limit moisture content. With the increase of the salt concentration, the compressibility of the granite residual soil increases first and then decreases after soaked for 7 days. When soaked for 14 days, the compressibility of the granite residual soil exhibits an overall upward trend. The shear strength, cohesion and internal friction angle first decrease and then increase with the increase of the salt concentration. After soaked for 14 days, the internal friction angle of the granite residual soil increases as the salt concentration increases. The SEM images show that the granite residual soil is in flocculation structure after soaked in Na2SO4 solution, and the soil particles are obviously coarsened. The research results may provide a certain reference value for the change laws of physical and mechanical properties of Na2SO4 solution after it affects the soil.
-
0. 引言
各向异性是黏土的基本性质之一,分为原生各向异性和次生各向异性。针对原生各向异性对黏土力学性状的影响,许多学者对与沉积平面呈不同夹角试样进行压缩、无侧限压缩和三轴压缩等试验,发现原生各向异性对黏土变形以及强度特性的影响不容忽视。
小应变剪切模量特性作为土的重要力学性质之一,也同样受到原生各向异性的影响。Simpson等[1]的研究表明,小应变剪切模量的原生各向异性对隧道及基坑周围土体变形的预测结果影响很大;Jovičić等[2]和吴宏伟等[3]分别针对伦敦黏土和上海软黏土进行研究,利用弯曲元测得两种土在低围压下水平和竖直方向上的最大剪切模量比值分别为1.5和1.21,说明对于不同种类黏土,原生各向异性对其小应变剪切模量的影响不尽相同。
结构性黏土在我国东南沿海地区分布广泛,许多工程建设涉及到此类黏土,迄今已对其小应变剪切模量进行了诸多研究,但以往的研究主要考虑孔隙比、应力水平和结构损伤等对小应变剪切模量的影响[4],而考虑原生各向异性对小应变剪切模量影响的研究较少,有必要进行系统探究。
本文对不同削样方向的湛江黏土原状试样开展不同围压下的共振柱试验,研究原生各向异性对最大动剪切模量的影响以及考虑原生各向异性的最大动剪切模量随围压演化规律的表征方法。
1. 试验材料与试验方案
1.1 试验材料与试样制备
土样取自湛江市某基坑内地下10~11 m,尺寸为30 cm×30 cm×30 cm原状块状样。表1为其基本物理力学指标与颗粒组成。由表1可见,湛江黏土具有较差物理性质,与软黏土相似,但力学性质较优,呈现上述特性的原因为其具有的强结构性[4]。
表 1 湛江黏土平均物理力学性质指标与颗粒组成Table 1. Physical and mechanical indexes and particle composition of Zhanjiang clay重度γ/(kN·m-3) 含水率w/% 孔隙比e 渗透系数K/(cm·s-1) 液限wL/% 塑限wP/% 塑性指数IP 结构屈服应力σk/kPa 无侧限抗压强度/kPa 灵敏度St 颗粒组成/% >0.05/mm 0.005~0.05/mm 0.002~0.005/mm <0.002/mm 17.1 52.98 1.44 2.73×10−8 59.6 28.1 31.5 400 143.5 7.2 8.2 39.5 20.7 31.6 图1(a)为不同方向圆柱试样示意图,定义试样轴线与土体沉积平面夹角为
α ,即竖直方向试样为90°,水平方向试样为0°。针对α 为0°,22.5°,45°,67.5°,90°方向原状样进行研究,试样规格尺寸为直径50 mm,高度100 mm的圆柱体。1.2 试验方法
试验所用设备为GDS共振柱仪,如图1(b)所示。试样的边界条件为一端固定,一端自由。通过电磁驱动系统对试样逐级施加扭矩,测得试样的共振频率和对应的剪应变,试样动剪切模量由下式得到:
G=ρ(2πfH/β)2, (1) 式中,G为试样动剪切模量,ρ为试样密度,f为共振频率,H为试样高度,β为扭转振动频率方程特征值。
试样在抽气饱和后安装至共振柱仪上,随后进行反压饱和,当B值达0.98后,进行固结,围压分别设定为50,100,200,300,400,500,600,700,800 kPa。试样固结完成后,进行共振柱试验。
2. 试验结果与分析
2.1 不同方向试样G-
γ 曲线规律如图2所示,不同方向试样动剪切模量G和剪应变
γ 的关系曲线形态与规律类似。剪切模量在小剪应变下衰减速度较小;随剪应变发展,衰减速度增大。低围压下G-γ 曲线随围压增大而上移,围压超过600~700 kPa,G-γ 曲线随围压增长而下移,与通常软黏土G-γ 曲线大多随围压增大而单调上移规律存在明显差异,说明结构性对湛江黏土G-γ 曲线规律影响较大。2.2 原生各向异性对最大动剪切模量的影响
湛江黏土动应力-应变关系可用Hardin-Drnevich双曲线模型表征,如下式:
τ=γa+bγ, (2) 式中,a,b为拟合参数。式(2)可以写为
1/G=a+bγ。 (3) 式(3)中,当
γ 趋近于0时,得到最大动剪切模量Gmax=1/a,利用式(3)求得不同方向试样在各围压下的Gmax。为了消除孔隙比对Gmax的影响,引入孔隙比函数F(e)=1/(0.3+0.7e2)将Gmax进行归一化处理,图3为经孔隙比函数归一化的Gmax/F(e)-围压σ3 曲线。随围压增大,不同方向试样Gmax/F(e)-σ3 曲线均呈现先上升后下降的规律,在围压为400~500 kPa即在σk 左右时,曲线出现转折。为了更好描述原生各向异性对最大动剪切模量的影响,定义Gmax/F(e)的原生各向异性系数:
Kα=Dα/D90°, (4) 式中,Dα定义为α方向试样的Gmax/F(e),D90°定义为90°(竖直)方向试样的Gmax/F(e)。
Gmax/F(e)的原生各向异性系数Kα与围压的关系如图4所示。相同围压下,Kα随方向角
α 变化,Kα整体上随α 增大而减小,即试样的方向越靠近水平其刚度越大,说明原生各向异性对湛江黏土最大动剪切模量Gmax的影响十分显著。湛江黏土基本单元为扁平状片堆、粒状碎屑矿物与单片颗粒,上述基本单元在沉积时,其长轴更倾向于水平方向,导致颗粒间水平方向的接触更紧密,结构更强[3],进而更靠近水平方向试样的刚度更大。当围压低于400~600 kPa时,同一方向试样Kα随围压增长基本保持恒定,K0°,K22.5°,K45°,K67.5°,K90°分别为1.314,1.279,1.148,1.045,1;当围压高于400~600 kPa时,同一方向试样Kα随围压增长呈明显减小趋势,不同方向试样的Gmax/F(e)差异减小。说明围压低于
σk 时,围压的增大几乎不影响原生各向异性对Gmax的影响,但当围压超过σk 后,围压的增大减弱了原生各向异性对Gmax的影响。文献[2]中伦敦黏土在围压超过屈服应力后,其水平与竖直方向试样的最大剪切模量的差异随围压增长也呈减小趋势,与本文试验结果一致。2.3 考虑原生各向异性的最大动剪切模量表征方法
图3中出现Gmax/F(e)随围压增大呈先上升后下降的特殊现象,文献[4]认为Gmax同时受到平均有效应力、孔隙比和结构损伤的影响,采用该文的表征方法对试验结果进行分析,具体的表达形式如下所示:
Gmax/F(e)=A(1+(σ′mpa)n)1+B(1+(σ′mpa)n)(kr+1−kr1+(ησ′mpc)λ)。 (5) 式中 A,B,n,kr,η和
λ 为反映各种应力历史和土体性质的参数;σ′m 为围压;pa为标准大气压;pc为表观前期固结压力即结构屈服应力σk ,不同方向试样压缩试验得到的σk 差异较小,均取400 kPa。采用式(5)将不同方向试样Gmax/F(e)与围压的关系进行定量表征。从图4可得,高应力下各向异性对试样的Gmax/F(e)影响减弱,可假定不同方向试样Gmax/F(e)极限值相同。最终将试验数据与拟合曲线一同绘制于图5,发现拟合效果很好,拟合参数见表2。
表 2 不同方向试样拟合参数Table 2. Fitting parameters of specimens in different directionsα A/MPa B n kr η λ R2 0° 39.92489 0.16678 0.54309 0.35092 0.56433 6.42998 0.99251 22.5° 37.89951 0.15999 0.58264 0.35462 0.56426 6.37147 0.99075 45° 33.76328 0.15168 0.54642 0.37740 0.55402 6.38473 0.99432 67.5° 31.15476 0.15761 0.56254 0.42499 0.60889 6.07737 0.99727 90° 29.75422 0.15743 0.56067 0.44448 0.57750 6.05669 0.99835 分析表2中拟合参数与试样方向的关系,可得参数A,kr,
λ 和试样轴线与土体沉积平面夹角α 呈线性关系(图6),参数B,n,η随α 增大分别保持在0.1587,0.5591,0.5738上下,且波动范围较小(参数B,n,η的标准差S分别为0.005455,0.01570和0.02131)。将图6中参数A,kr,
λ 的拟合方程和参数B,n,η的平均值同时代入式(5),得到考虑原生各向异性的最大动剪切模量的表征方法:Gmax/F(e)=(c1α+c2)(1+(σ′mpa)n)1+B(1+(σ′mpa)n)· ((d1α+d2)+1−(d1α+d2)1+(ησ′mpc)(e1α+e2))。 (6) 式中
σ′m 为围压;α 表示试样的方向,为试样轴线与土体沉积平面夹角;pa为标准大气压,取101.325 kPa;pc为σk ,取400 kPa;B=0.1587,n=0.5591,η=0.5738;c1=−0.1204,c2=39.9166;d1=1.144×10−3,d2=0.3390;e1=−4.625×10−3,e2=6.4722。3. 结论
(1)在同一围压下,不同
α 试样经孔隙比函数归一化的最大动剪切模量Gmax/F(e)与90°方向试样Gmax/F(e)的比值Kα随α 增大而减小。当围压低于和高于σk 时,同一α 试样Kα随围压增长分别呈基本保持恒定与明显减小趋势,说明当围压低于σk 时,围压几乎不影响原生各向异性对Gmax影响,围压超过σk 后,不同方向的Gmax/F(e)差异减小,围压的增大减弱了原生各向异性对Gmax的影响。(2)受固结压硬和结构损伤的影响,湛江黏土的Gmax/F(e)变化规律与通常软黏土试验结果不同,不同方向试样的Gmax/F(e)随围压增大均呈先增大后减小规律,当围压在
σk 左右时出现转折。(3)基于采用考虑结构损伤的公式可很好拟合湛江黏土不同方向试样Gmax与围压关系曲线,提出了考虑原生各向异性影响的Gmax演化规律表征方法。
-
表 1 花岗岩残积土的基本物理参数
Table 1 Basic physical parameters of granite residual soil
天然密度/
(g·cm-3)相对质量密度 天然含水率/% 液限/
%塑限/
%塑性指数 1.95 2.54 16.20 39.4 23.9 15.5 表 2 试验条件
Table 2 Test conditions
工况 Na2SO4溶液浓度/(mol·L-1) 浸泡时间/d 1 0 7 2 0 14 3 0.1 7 4 0.1 14 5 0.3 7 6 0.3 14 7 0.5 7 8 0.5 14 9 1.0 7 10 1.0 14 -
[1] 安然, 孔令伟, 黎澄生, 等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报, 2020, 39(9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm AN Ran, KONG Lingwei, LI Chengsheng, et al. Strength attenuation and microstructure damage of granite residual soils under hot and rainy weather[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1902-1911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm
[2] 安然, 孔令伟, 柏巍, 等. 单轴荷载下残积土的电阻率损伤模型及干湿循环效应[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3159-3167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1058.htm AN Ran, KONG Lingwei, BAI Wei, et al. The resistivity damage model of residual soil under uniaxial load and the law of drying-wetting effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3159-3167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1058.htm
[3] 黎澄生, 安然, 舒荣军, 等. 花岗岩残积土初期崩解规律与数学形态学方法近似模拟[J]. 岩石力学与工程学报, 2020, 39(4): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004019.htm LI Chengsheng, AN Ran, SHU Rongjun, et al. Initial-disintegration analysis of granite residual soil and approximate simulation of mathematical morphology[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 845-854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004019.htm
[4] DI MAIO C, SCARINGI G. Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface[J]. Engineering Geology, 2016, 200: 1-9. doi: 10.1016/j.enggeo.2015.11.007
[5] ZHANG F, WANG G, KAMAI T, et al. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution [J]. Engineering Geology, 2013, 155: 69-79. doi: 10.1016/j.enggeo.2012.12.018
[6] CAKAR E, YUKSELEN-AKSOY Y. Ageing effect on compressibility, permeability and shear strength of clayey soils exposed to salt solutions[J]. Geomechanics and Engineering, 2021, 25: 245-251.
[7] KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46: 177-189. doi: 10.1139/T08-120
[8] 张芹, 颜荣涛, 韦昌富, 等. 孔隙溶液对粉质黏土界限含水率的影响[J]. 岩土力学, 2015, 36(增刊1): 558-562, 608. ZHANG Qin, YAN Rongtao, WEI Changfu, et al. Effects of pore fluids on consistency limits of silty clay[J]. Rock and Soil Mechanics, 2015, 36(S1): 558-562, 608. (in Chinese)
[9] 于海浩, 孙德安. 不同溶液下弱膨胀土的抗剪强度研究[J]. 地下空间与工程学报, 2019, 15(2): 423-427, 451. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201902016.htm YU Haihao, SUN Dean. Shear strength of weakly expansive soils in different solution[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 423-427, 451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201902016.htm
[10] 于海浩, 韦昌富, 颜荣涛, 等. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. doi: 10.11779/CJGE201503023 YU Haihao, WEI Changfu, YAN Rongtao, et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. (in Chinese) doi: 10.11779/CJGE201503023
[11] 杨秀娟, 武雷杰, 刘惹梅, 等. 酸性溶液对重塑黄土工程性质的影响研究[J]. 人民黄河, 2020, 42(7): 122-125, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202007028.htm YANG Xiujuan, WU Leijie, LIU Remei, et al. Effect of acid solution on engineering properties of remodeled loess[J]. Yellow River, 2020, 42(7): 122-125, 135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202007028.htm
[12] 杨秀娟, 汪源, 樊恒辉, 等. 孔隙溶液酸碱度对重塑黄土工程性质的影响研究[J]. 长江科学院院报, 2018, 35(9): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809020.htm YANG Xiujuan, WANG Yuan, FAN Henghui, et al. Effects of pore solution's pH value on engineering properties of remolded loess[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809020.htm
[13] 姚传芹, 韦昌富, 马田田, 等. 孔隙溶液对膨胀土力学性质影响[J]. 岩土力学, 2017, 38(增刊2): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm YAO Chuanqin, WEI Changfu, MA Tiantian, et al. Effects of pore solution on mechanical properties of expansive soil[J]. Rock and Soil Mechanics, 2017, 38(S2): 116-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm
[14] 郑新江, 徐永福. 盐溶液饱和高庙子膨润土的强度特性[J]. 岩土工程学报, 2021, 43(4): 783-788. doi: 10.11779/CJGE202104022 ZHENG Xinjiang, XU Yongfu. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 783-788. (in Chinese) doi: 10.11779/CJGE202104022
[15] 梁健伟, 房营光, 陈松. 含盐量对极细颗粒黏土强度影响的试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3821-3829. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2080.htm LIANG Jianwei, FANG Yingguang, CHEN Song. Experimental research on effect of salt content on strength of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3821-3829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2080.htm
[16] 杨德欢, 颜荣涛, 韦昌富, 等. 粉质黏土强度指标的水化学敏感性研究[J]. 岩土力学, 2016, 37(12): 3529-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612023.htm YANG Dehuan, YAN Rongtao, WEI Changfu, et al. A study of water chemical sensitivity of strength indices of silty clay[J]. Rock and Soil Mechanics, 2016, 37(12): 3529-3536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612023.htm
[17] 汤连生, 刘增贤, 黄国怡, 等. 红土中含铁离子物质的化学行为与力学效应[J]. 水文地质工程地质, 2004, 31(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200404007.htm Tang Liansheng, Liu Zengxian, Huang Guoyi, et al. Chemical action and mechanical effect of the material with abundant iron ion in red soils[J]. Hydrogeology & Engineering Geology, 2004, 31(4): 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200404007.htm
[18] 刘懿韬. 海水对花岗岩残积土的工程特性影响及土体加固机理研究[D]. 广州: 华南农业大学, 2018. LIU Yitao. Influence of Seawater on Engineering Properties of Granite Residual Soil and Soil Reinforcement Mechanism[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
[19] 肖桂元, 朱杰茹, 徐光黎, 等. NaCl溶液引起红黏土界限含水率变化的试验研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3314-3321. XIAO Guiyuan, ZHU Jieru, XU Guangli, et al. Experimental study on change of limit water content of red clay caused by NaCl solution[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3314-3321. (in Chinese)
[20] 雷杰, 于海浩, 蒋仕清, 等. 氯化纳溶液对铝土矿矿泥的沉降影响[J]. 矿业研究与开发, 2021, 41(9): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202109027.htm LEI Jie, YU Haihao, JIANG Shiqing, et al. Effect of sodium chloride solution on sedimentation of bauxite slime[J]. Mining Research and Development, 2021, 41(9): 145-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202109027.htm
[21] 汤连生. 略论岩土化学力学[J]. 中山大学学报(自然科学版), 2002, 41(3): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200203022.htm TANG Liansheng. On chemical mechanics for rock and soil[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(3): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200203022.htm
[22] 汤连生, 张鹏程, 王思敬. 水-岩化学作用之岩石断裂力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(6): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 822-827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm
[23] 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39(4): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200004023.htm TANG Liansheng. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4): 104-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200004023.htm
[24] 江南. 孔隙水中阳离子对海相黏性土结合水的影响及其力学效应研究[D]. 吉林: 吉林大学, 2021. JIANG Nan. Study on the Influence of Cations in Pore Water on the Bound Water of Marine Cohesive Soil and Its Mechanical Effects[D]. Jilin: Jilin University, 2021. (in Chinese)
[25] 梁埔源, 刘玉坤, 刘会强. NaCl溶液对宁明膨胀土强度指标的影响[J]. 土工基础, 2017, 31(5): 651-654. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201705029.htm LIANG Puyuan, LIU Yukun, LIU Huiqiang. Effect of NaCl solution on the strength parameters of Ningming expansive soil[J]. Soil Engineering and Foundation, 2017, 31(5): 651-654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201705029.htm
[26] 张彤炜, 邓永锋, 刘松玉, 等. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. doi: 10.11779/CJGE201412014 ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, et al. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. (in Chinese) doi: 10.11779/CJGE201412014
[27] 于海浩. 不同孔隙溶液和温度下的膨胀土力学特性[D]. 上海: 上海大学, 2018. YU Haihao. Mechanical Properties of Expansive Soil under Different Pore Solutions and Temperatures[D]. Shanghai: Shanghai University, 2018. (in Chinese)
[28] LIU C, TANG C-S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.
[29] 郭秀军, 刘涛, 贾永刚, 等. 土的工程力学性质与其电阻率关系实验研究[J]. 地球物理学进展, 2003, 18(1): 151-155. GUO Xiujun, LIU Tao, JIA Yonggang, et al. The study of the relationship between engineering mechanical properties and resistivity of soils[J]. Progress in Geophysics, 2003, 18(1): 151-155. (in Chinese)
-
其他相关附件