Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水平低周往复荷载作用下核岛桩基抗震性能试验研究

李斌, 景立平, 王友刚, 涂健, 齐文浩

李斌, 景立平, 王友刚, 涂健, 齐文浩. 水平低周往复荷载作用下核岛桩基抗震性能试验研究[J]. 岩土工程学报, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844
引用本文: 李斌, 景立平, 王友刚, 涂健, 齐文浩. 水平低周往复荷载作用下核岛桩基抗震性能试验研究[J]. 岩土工程学报, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844
LI Bin, JING Liping, WANG Yougang, TU Jian, QI Wenhao. Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844
Citation: LI Bin, JING Liping, WANG Yougang, TU Jian, QI Wenhao. Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844

水平低周往复荷载作用下核岛桩基抗震性能试验研究  English Version

基金项目: 

中国地震局工程力学研究所基本科研业务费专项项目 2019B10

国家科技重大专项项目 2018ZX06902016

详细信息
    作者简介:

    李斌(1992—),男,硕士研究生,主要从事桩土相互作用及桩基抗震方面的研究。E-mail: binli_china@163.com

    通讯作者:

    景立平,E-mail: jing_liping@126.com

  • 中图分类号: TU473

Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading

  • 摘要: 群桩基础是核岛结构在非基岩场地采用的主要基础形式,由于核岛结构质量大、刚度大且质量分布集中,会使基桩处于高轴压比的工作状态。为研究高轴压比(轴压比为0.45)钢筋混凝土群桩基础的抗震性能及地震作用下的破坏模式,开展了粉质黏土中钢筋混凝土群桩基础水平低周往复加载试验,分析了桩基的破坏模式和滞回特征以及桩身变形和内力分布等的变化规律。试验结果表明:基桩在桩头区域均发生了压弯破坏,桩头与承台连接部位破坏最为严重,破坏区域延伸至桩顶以下5倍桩径深度范围内;塑性铰埋深的大小关系为推覆前端基桩>推覆后端基桩>边桩>中桩;推覆前端基桩和中桩的桩身弯矩反弯点在桩顶以下(1~3)倍桩径之间,推覆后端基桩有两个反弯点,分别在桩顶以下(3~5)倍和(5~7)倍桩径,边桩没有反弯点;在水平往复荷载作用下桩身挠度呈倒置的“伞”形;弹性工作阶段,推覆前端和推覆后端基桩荷载分配比例均为24%,边桩为21%,中桩为10%。
    Abstract: The pile group is the main form of nuclear island structure in non-bedrock site. As the structure of the nuclear island has a large mass, large stiffness and concentrated mass distribution, the piles will have a high axial compression ratio. To study the seismic performance of the pile group with a high axial compression ratio, the cyclic lateral loading tests on the pile group in silty clay are carried out, and the failure mode and hysteretic characteristics as well as the variation law of pile deformation and internal force distribution are analyzed. The test results show that the compression-flexural failure mode occurs at the pile head, the connection between pile head and cap is the most serious, and the failure area extends to the depth of 5 times the pile diameter below the pile top. The relationship of plastic hinge length is as follows: front pile > back pile > side pile > middle pile. The inflection points of the front pile and the middle pile are between 1D and 3D below the pile top. The back pile has two inflection points, which are respectively between 3D~5D and 5d~7d below the pile top. The side pile has no inflection point. The deflection of the pile presents an inverted umbrella shape. At the elastic working stage, the load distribution proportion of the front pile and back pile is 24%, that of the side pile is 21%, and that of the middle pile is 10%.
  • 目前,落锤式弯沉仪(FWD)是应用最为广泛的路面结构快速无损检测手段之一,而层状弹性静力体系仍是FWD测试中最为常用的力学模型。在该模型中,路面结构被简化为各向同性且完全连续的弹性层状体系[1]。现有研究表明,由于现场碾压成型的施工方式以及各结构层材料的差异,路面结构存在明显的横观各向同性以及非连续层间接触状态[2-3]。除此之外,由于路基土具有较为明显的应力、湿度依赖特性,路基模量还存在着显著的空间非均匀分布特征。由此可见,原有层状弹性体系理论难以真实反映沥青路面的力学行为,有必要在FWD检测中综合考虑沥青路面的黏弹性、横观各向同性、层间连续条件,以及路基模量的非均匀分布特征。

    路面材料方面,Wang等[4]结合沥青混合料三轴试验,得出沥青层水平模量仅为竖向模量的20%~50%。类似的,Tutumluer等[5]通过试验得出粒料类材料的水平与竖向的模量比为0.03~0.21。进而,不少学者针对这种特征开展了理论研究。Al-Qadi等[6]研究了碎石基层材料横观各向同性特性对路面结构动力响应的影响,结果表明考虑粒料类基层的横观各向同性特性可以更准确地计算路面力学响应。董泽蛟等[7]对比了移动荷载作用下各向同性以及横观各向同性路面结构应变场,结果显示基于各向同性的路面设计会低估永久变形和应变。Yan等[8]结合解析层元法推导了考虑横观各向同性的路面结构动力响应解析解,表明横观各向同性对路表弯沉盆具有明显的影响。Ai等[9-10]推导了简谐荷载作用下横观各向同性多层介质动力响应解析解,计算结果表明在移动或原位荷载作用下横观各向同性均能对竖向位移产生显著影响。另外,路面结构层间接触条件也是不可忽略的因素。Mousa等[11]在对路面现场芯样进行分析后发现,现有服役阶段路面结构层间大多处于半接触状态。冉武平等[12]指出,层间黏接力不足可引起沥青面层的寿命衰减40%~80%。颜可珍等[13]通过对比不同层间接触状态下的路面结构应力响应,发现层间接触状况对路表弯沉、沥青层层底拉应变以及基层层底竖向应变均有较大影响。Jiang等[14]研究了面层–基层、基层–底基层层间接触状态对路面结构寿命的影响,指出层间条件对柔性基层沥青路面寿命的影响要大于荷载分布。

    路基材料方面,许多研究表明路基材料具有明显的非线性特征[15-16]。Wang等[17]和Li等[18]在NCHRP 1-28A三参数模型基础上,开发了考虑基层和路基材料非线性的路面结构有限元计算方法,并结合ANN-GA算法开展了路面非线性参数反演研究。Zhang等[19-20]和Peng等[21]通过大量华南黏土的动三轴试验以及土水特征曲线结果,建立了考虑湿度和应力依赖的路基土动回弹模量预估模型,开发了路基非线性有限元计算方法,并结合南昌实际气候开展数值计算,指出路基结构动回弹模量具有显著的时空非均匀分布特征。Muho等[22]在平面应变假设基础上,推导了考虑路基剪切模量沿深度方向非均匀分布的动力响应解析解,并就不同的路基剪切模量分布开展计算,表明剪切模量的非均匀分布对路表弯沉具有较大影响。

    当前,路面结构力学响应计算主要分为有限元法和解析解法。有限元法对复杂边界条件和本构关系具有良好的适应性,被广泛应用于材料非线性、多物理场耦合计算[23-24]。相比有限元法,解析解是一种计算精度高、速度快的求解方法。随着路面力学解析解的长足发展,路面结构中存在的黏弹性[25]、横观各向同性[26-27]甚至复杂层间条件[28]等因素被相继考虑。但当前尚无全面考虑材料黏弹性、横观各向同性、层间接触条件以及路基模量沿深度非均匀分布等因素的沥青路面结构动力响应解析计算方法。为此,本文主要就FWD荷载作用下的路面结构动力响应解析解开展研究。首先,基于状态空间法以及刚度矩阵法获得了考虑以上特征的沥青路面动力响应解析解;然后,应用ABAQUS以及文献对比验证了解析解的准确性;最后,分析了路面及路基结构参数对路表弯沉的影响。

    图 1(a)所示,将FWD作用下的路面结构简化为一轴对称N层层状半空间体系,其每一层层底坐标分别为z1,z2,…。其中第1层—第N-1层为考虑材料横观各向同性以及层间条件的路面结构,第N层为考虑模量非均匀分布的半空间路基。如图 1(b)所示,参考Vrettos[29-30]对关于各类颗粒土质模量非均匀分布的研究,采用下式表征路基竖向模量沿竖向的分布规律:

    EvN(z)=Ev0+(EvEv0)(1eαz), (1)
    图  1  沥青路面力学模型
    Figure  1.  Mechanical model for asphalt pavement

    式中,EvN(z)为路基竖向模量沿深度方向的表达式,Ev0为路基顶面模量,Ev为无限远处模量,Ev > Ev0α为描述模量沿深度渐变速度的无量纲系数,e为自然常数,e≈2.718,z为距离路基顶面的垂直距离。

    柱坐标系下动力平衡方程为

    σrr+τzrz+σrσθr=ρ2urt2,σzz+τzrr+τzrr=ρ2uzt2} (2)

    式中σrσθσzτzr为径向、环向、竖向和切向应力分量;rz为距离坐标原点的水平和垂直距离;ρ为密度;uruz为水平以及垂直方向位移;t为时间。考虑到路基竖向模量Ev为关于z的函数,对柱坐标系下物理方程进行如下改写:

    [σrσθσzτzr]=Ev[C11C12C130C12C11C130C13C13C330000C44][εrεθεzγzr], (3)

    式中,C11, C12, C13, C33, C44为表征材料横观各向同性的材料参数,C11=kne(1neμ2v)C12=kne(μh+neμ2v)C13=kneμv(1+μv)C33=k(1μ2h)C44=Gv=0.5Ev (1+μv)1k=[(1+μh)(1μh2neμ2v)]1ne为模量比,ne=EhE1vεrεθεzγzr为径向、环向、竖向和切向应变分量;Ehμv分别为垂直方向的模量以及泊松比;Evμh分别为水平方向上的模量以及泊松比。柱坐标下的几何方程为

    [εrεθεzγzr]=[r1r0z00zr]T[uruz] (4)

    通常,FWD荷载可简化为半正弦脉冲荷载。进而,图 1(a)所示的荷载以及位移边界条件可写为

    σz(0)=pmaxsin(πT0t)H(t)H(T0t)H(r0r) ,τzr(0)=σr(0)=0 ,σz()=τzr()=σr()=0 ,ur()=uz()=0 ,} (5)

    式中,pmax为荷载峰值,T0为冲击时间,r0为作用半径,通常为0.15 m,H(∙)为阶跃函数。此外,由于实际不同路面结构层材料的差异性,不可避免的会出现层间部分甚至完全滑动的情况,这里采用Matsui等[31]所提出的剪切弹簧来模拟路面层间接触状态:

    (1αnx)[ur(n+1)(zn)urn(zn)]=αnxβnxτzrn(zn) (6)

    式中下标n为路面结构层层位(1≤nN-1);αnx为第n层与第(n+1)层的层间滑移系数,0αnx<1;其中,当αnx=0时为完全连续状态,当αnx=0.999时表示完全滑动状态;βnx为与第n层与第(n+1)层模量与泊松比有关的系数,βnx=b[(1+μvn)E1vn+(1+μv(n+1))E1v(n+1)]。除切向位移ur外,其余应力响应均为完全连续。选取uruzτzrσz为状态变量,并设S(z)为深度z处的状态向量,即S(z)=[ur(z),uz(z),τzr(z),σz(z)]。可获得如下所示的相邻层间状态向量关系:

    FnS|n(zn)=S|n+1(zn), (7)

    式中,Fn为第n层与第(n+1)层的层间接触矩阵,Fn=[I2×2˜Fn02×2I2×2]˜Fn=[αnxβnx(1αnx)1000]I2×2为2阶单位矩阵,02×2为2阶零矩阵,S|n(z)表示第n层深度z处的状态向量。

    对于路面结构,联立式(2)~(4),消去式(2)中变量σrσθτzrσz,可构建仅含uruz的偏微分方程组;类似的,对于路基结构,同样可构建仅有uruz的偏微分方程组。

     [C11(2urr2+urr1rurr2)+  (C13+C44)2uzzr+C442urz2]Ev=ρ2urt2,[(C13+C44)(2urrz+1rurz)+ C332uzz2+C44(2uzr2+uzr1r)]Ev=ρ2uzt2} (8)
     [C11(2urr2+urr1rurr2)+(C13+C44)2uzzr+C442urz2]Ev(z)+C44(urz+uzr)Ev(z)z=ρ2urt2,[(C13+C44)(2urrz+1rurz)+C332uzz2+C44(2uzr2+uzr1r)]Ev(z)+(C13urr+C13urr+C33uzz)Ev(z)z=ρ2uzt2} (9)

    对式(8)中t进行Laplace变换,ˉf(s)=+0f(t) estdt;对r执行Hankel变换,˜fk(ξ)=+0rf(r)Jk (ξr)dr,Jk(∙)为k阶Bessel函数。可得关于z的常系数常微分方程组:

    d2˜¯ur1dz2φ2d˜¯uz0dzφ1˜¯ur1=0 ,d2˜¯uz0dz2+φ4d˜¯ur1dzφ3˜¯uz0=0} (10)

    式中φ1=(C11ξ2 + ρs2E1v)C144φ2=ξ(C13+C44)C144φ3=(C44ξ2 + ρs2E1v)C133φ4=ξ(C13+C44)C133~ˉuz0表示对变量uz执行Laplce变换以及0阶Hankel变换的结果;~ˉur1表示对变量ur执行Laplce变换以及1阶Hankel变换的结果;sξ分别为Laplace变换以及Hankel变换积分变量。求解式(10)可得

    ˜¯ur1=A1e(ha)z+A2e(hb)z+A3eaz+A4ebz,˜¯uz0=a2φ1aφ2A1e(hz)a+b2φ1bφ2A2e(hz)ba2φ1aφ2A3eazb2φ1bφ2A4ebz,a,b=[0.5(φ1+φ3φ2φ4)± (φ2φ4)22φ2φ4(φ1+φ3)+(φ1φ3)2]0.5,} (11)

    式中,参数A1A2A3A4为与边界条件相关的待定常数,h为结构层厚度。结合式(3),(4),可获得~ˉτzr1以及~ˉσz0的通解表达式。因而,可获得路面结构状态向量˜ˉS(z)=M(ξ,s)diag[e(hz)a,e(hz)b,eaz,ebz]w。其中,w=[A1, A2 A3 A4]T,系数矩阵M(ξ, s)为

    M(ξ,s)=[DdDuSdSu], (12)

    式中,Dd=[11(a2φ1)(aφ2)1(b2φ1)(bφ2)1]Du=[11(a2φ1)(aφ2)1(b2φ1)(bφ2)1], Sd=[C44Ev(aa2φ1aφ2ξ)C44Ev(bb2φ1bφ2ξ)Ev(ξC13+C33a2φ1φ2)Ev(ξC13+C33b2φ1φ2)], Su=[C44Ev(aa2φ1aφ2ξ)C44Ev(bb2φ1bφ2ξ)Ev(ξC13+C33a2φ1φ2)Ev(ξC13+C33b2φ1φ2)]

    对式(9)中t执行Laplace变换,变量r分别执行Hankel变换,可得变系数常微分方程组:

    [C11ξ2˜¯ur1ξ(C13+C44)d˜¯uz0dz+C44d2˜¯ur1dz2]EvN(z)+ C44(d˜¯ur0dzξ˜¯uz0)dEvN(z)dz=ρs2˜¯ur1,[(C13+C44)ξd˜¯ur1dz+C33d2˜¯uz0dz2C44ξ2˜¯uz0]EvN(z)+(ξC13˜¯ur1+C33d˜¯uz0dz)dEvN(z)dz=ρs2˜¯uz0 } (13)

    与路面结构所获得的常微分方程组不同,由于路基竖向模量EvN(z)为与z相关函数,因而不能直接求解。这里结合Vrettos[32-33]所提出的求解方法,引入ψe-αz。其中,Ξ为无量纲系数,

    Ξ=1Ev0E1v (14)

    进而,可得如下式所示的关于ψ的变系数常微分方程组:

    [C11ξ2(1ψ)+ρs2E1v]˜¯ur1+C44α2ψ(12ψ)~¯ur1+α2C44(1ψ)ψ2¯u (15)

    式中f',f''分别表示对 \psi 的1阶和2阶导数; \delta = Ev0/Ev∞

    为便于表示,后续表达式中均省略变量 \psi 。采用Frobenius法,假设 {\tilde {{\bar u}_{r1}}} 以及 {\tilde {{\bar u}_{z0}}} 存在如下式所示的级数形式通解:

    \left. \begin{array}{l} {\tilde{\overline{u}}}_{z0}={\displaystyle {\sum }_{n=0}^{\infty }{a}_{n}{\psi }^{n+m}\text{ }}, \\ {\tilde{\overline{u}}}_{r1}={\displaystyle {\sum }_{n=0}^{\infty }{b}_{n}{\psi }^{n+m}\text{ }, } \end{array} \right\} (16)

    式中,anbn为级数系数,m为待定常数。将位移通解表达式(式(16))代入变系数常微分方程组(式(15))中,可得下列级数等式关系:

    \left. \begin{array}{l} {\displaystyle {\sum }_{n=0}^{\infty }\left[{C}_{44}{\alpha }^{2}{(n+m)}^{2}-{C}_{11}{\xi }^{2}-\theta \right]{a}_{n}{\psi }^{n+m}+}\\ \alpha \xi ({C}_{13}+{C}_{44}){\displaystyle {\sum }_{n=0}^{\infty }(n+m){b}_{n}{\psi }^{n+m}\text{ }}\\ ={\displaystyle {\sum }_{n=1}^{\infty }\left[{\alpha }^{2}{C}_{44}(n+m-1)(n+m)-{C}_{11}{\xi }^{2}\right]{a}_{n-1}{\psi }^{n+m}+}\\ \alpha \xi {\displaystyle {\sum }_{n=1}^{\infty }\left[{C}_{13}(n+m-1)+{C}_{44}(n+m)\right]{b}_{n-1}{\psi }^{n+m}, }\\ -\alpha \xi ({C}_{13}+{C}_{44}){\displaystyle {\sum }_{n=0}^{\infty }(n+m){a}_{n}{\psi }^{n+m}\text{+}}\\ {\displaystyle {\sum }_{n=0}^{\infty }\left[{\alpha }^{2}{C}_{33}{(n+m)}^{2}-{C}_{44}{\xi }^{2}-\theta \right]{b}_{n}{\psi }^{n+m}}\\ =-\alpha \xi {\displaystyle {\sum }_{n=1}^{\infty }\left[{C}_{13}(n+m)+{C}_{44}(n+m-1)\right]{a}_{n-1}{\psi }^{n+m}}+\\ {\displaystyle {\sum }_{n=1}^{\infty }\left[{\alpha }^{2}{C}_{33}(n+m-1)(n+m)-{C}_{44}{\xi }^{2}\right]{b}_{n-1}{\psi }^{n+m}\text{ }, } \end{array} \right\} (17)

    式中,θ=ρs2/Ev∞。若式(17)成立,则等式两侧ψ相同次幂的系数应对应相等。令n=0,若a0b0存在唯一关系,参数m应满足下列4次方程。

    {\alpha ^2}{C_{33}}{C_{44}}{m^4} + \left[ {{\xi ^2}(C_{13}^2 + 2{C_{13}}{C_{44}} - {C_{11}}{C_{33}})} \right. - \\ \theta ({C}_{33}+{C}_{44})]{m}^{2}+({C}_{44}{\xi }^{2}+\theta )({C}_{11}{\xi }^{2}+\theta )=0\text{ }。 (18)

    复数域内,求解式(18)所示的4次方程,m必定存在4个解,假设a_0^{(1)} = a_0^{(2)} = a_0^{(3)} = a_0^{(4)} = 1,进而可得

    b_0^{(i)} = \frac{{\alpha \xi ({C_{13}} + {C_{44}}){m_i}}}{{{\alpha ^2}{C_{33}}m_i^2 - {C_{44}}{\xi ^2} - \theta }} , (19)

    式中,i=1,2,3,4。

    通过式(17),可得anbn递推关系:

    \left. \begin{array}{l} {a}_{n}^{(i)}=\frac{{F}_{22}^{(i)}(n){\overline{F}}_{1}^{(i)}(n)-{F}_{12}^{(i)}(n){\overline{F}}_{2}^{(i)}(n)}{{F}_{11}^{(i)}(n){F}_{22}^{(i)}(n)-{F}_{12}^{(i)}(n){F}_{21}^{(i)}(n)}, \\ {b}_{n}^{(i)}=\frac{{F}_{11}^{(i)}(n){\overline{F}}_{2}^{(i)}(n)-{F}_{21}^{(i)}(n){\overline{F}}_{1}^{(i)}(n)}{{F}_{11}^{(i)}(n){F}_{22}^{(i)}(n)-{F}_{12}^{(i)}(n){F}_{21}^{(i)}(n)}, \end{array} \right\} (20)

    式中,n=1, 2, 3, …,

    \left. \begin{array}{l} {F}_{11}^{(i)}(n)={C}_{44}{\alpha }^{2}{(}^{n}-{C}_{11}{\xi }^{2}-\theta \text{ }, \\ {F}_{12}^{(i)}(n)=\alpha \xi ({C}_{13}+{C}_{44})(n+{m}_{i})\text{ }, \\ {F}_{21}^{(i)}(n)=-\alpha \xi ({C}_{13}+{C}_{44})(n+{m}_{i})\text{ }, \\ {F}_{22}^{(i)}(n)={\alpha }^{2}{C}_{33}{(}^{n}-{C}_{44}{\xi }^{2}-\theta \text{ }, \end{array} \right\} (21)
    \left. \begin{array}{l} {\overline{F}}_{1}^{(i)}(n)=\left[{\alpha }^{2}{C}_{44}(n+{m}_{i}-1)(n+{m}_{i})-{C}_{11}{\xi }^{2}\right]{a}_{n-1}^{(i)}+\\ \alpha \xi \left[{C}_{13}(n+{m}_{i}-1)+{C}_{44}(n+{m}_{i})\right]{b}_{n-1}^{(i)}\text{ }, \\ {\overline{F}}_{2}^{(i)}(n)=-\alpha \xi \left[{C}_{13}(n+{m}_{i})+{C}_{44}(n+{m}_{i}-1)\right]{a}_{n-1}^{(i)}+\\ \left[{\alpha }^{2}{C}_{33}(n+{m}_{i}-1)(n+{m}_{i})-{C}_{44}{\xi }^{2}\right]{b}_{n-1}^{(i)}\text{ }, \end{array} \right\} (22)

    由此, {\tilde {{\bar u}_{r1}}} {\tilde {{\bar u}_{z0}}} 的通解公式可以表示为

    \left. \begin{array}{l} {\tilde{\overline{u}}}_{r1}={\displaystyle {\sum }_{i=1}^{4}{A}_{i}{\displaystyle {\sum }_{n=0}^{\infty }{a}_{n}^{(i)}{\psi }^{n+{m}_{i}}, }}\\ {\tilde{\overline{u}}}_{z0}={\displaystyle {\sum }_{i=1}^{4}A{\displaystyle {\sum }_{n=0}^{\infty }{b}_{n}^{(i)}{\psi }^{n+{m}_{i}}, }} \end{array} \right\} (23)

    式中,参数A1A2A3A4为与边界条件相关的待定常数。

    将式(23)所示的通解代入式(3),(4),可进一步获得路基动力响应通解表达式:\tilde {\bar S}(\psi ) = M(\xi , s, \psi )w。其中,w=[A1, A2, A3, A4]T,矩阵M(\xi , s, \psi )元素如下所示:

    \left. \begin{array}{l} {M}_{1i}(\psi )={\displaystyle {\sum }_{n=0}^{\infty }{a}_{n}^{(i)}{\psi }^{n+{m}_{i}}\text{ }, }\\ {M}_{2i}(\psi )={\displaystyle {\sum }_{n=0}^{\infty }{b}_{n}^{(i)}{\psi }^{n+{m}_{i}}\text{ }, }\\ {M}_{3i}(\psi )=-{\displaystyle {\sum }_{n=0}^{\infty }{C}_{44}{E}_{\text{v}N}(\psi )\times }\left[\alpha (n+{m}_{i}){a}_{n}^{(i)}\text{+}\xi {b}_{n}^{(i)}\right]{\psi }^{n+{m}_{i}}\text{ }, \\ {M}_{4i}(\psi )={\displaystyle {\sum }_{n=0}^{\infty }{E}_{\text{v}N}(\psi )\times }\left[{C}_{13}\xi {a}_{n}^{(i)}-\alpha {C}_{33}(n+{m}_{i}){b}_{n}^{(i)}\right]{\psi }^{n+{m}_{i}}\text{ }。 \end{array} \right\} (24)

    为便于后续推导,对路面结构通解表达式中的系数矩阵M(ξ, s)、状态向量 \tilde {\bar S}(z) 以及系数矩阵w进行分块。M(\xi , s) = \left[ {\begin{array}{*{20}{c}} {{D_{\text{d}}}}&{{D_{\text{u}}}} \\ {{S_{\text{d}}}}&{{S_{\text{u}}}} \end{array}} \right] \tilde {\bar S}(z) = {\left[ {\begin{array}{*{20}{c}} {{{\tilde {\bar S}}_1}(z)}&{{{\tilde {\bar S}}_2}(z)} \end{array}} \right]^{\text{T}}} {\tilde {\bar S}_1}(z) = {\begin{array}{*{20}{c}} {[{{\tilde {\bar u}}_{r{\text{1}}}}(z)}&{{{\tilde {\bar u}}_{z0}}(z)]} \end{array}^{\text{T}}} {\tilde {\bar S}_2} = {\begin{array}{*{20}{c}} {[{{\tilde {\bar \tau} }_{zr1}}(z)}&{{{\tilde {\bar \sigma} }_{z0}}(z)]} \end{array}^{\text{T}}} w=[w1, w2]Tw1=[A1, A2]Tw2=[A3, A4]T。取第n(1 < nN-1)层路面结构,并令 {h_n} = {z_n} - {z_{n - 1}} ,可得

    \left[ {\begin{array}{*{20}{c}} {{{\tilde {\bar S}}_1}\left| {_n} \right.({z_{n - 1}})} \\ {{{\tilde {\bar S}}_1}\left| {_n} \right.({z_n})} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{D_{{\text{d}}n}}{\varLambda ^{ - 1}}({h_n})}&{{D_{{\text{u}}n}}} \\ {{D_{{\text{d}}n}}}&{{D_{{\text{u}}n}}{\varLambda ^{ - 1}}({h_n})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{w_1}} \\ {{w_2}} \end{array}} \right] , (25)
    \left[ {\begin{array}{*{20}{c}} {{{\tilde {\bar S}}_2}\left| {_n} \right.({z_{n - 1}})} \\ {{{\tilde {\bar S}}_2}\left| {_n} \right.({z_n})} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{S_{{\text{d}}n}}}&{{S_{{\text{u}}n}}{\varLambda ^{ - 1}}({h_n})} \\ {{S_{{\text{d}}n}}{\varLambda ^{ - 1}}({h_n})}&{{S_{{\text{u}}n}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{w_1}} \\ {{w_2}} \end{array}} \right] , (26)

    式中, {\varLambda ^{ - 1}}(z) = {\text{diag}}({{\text{e}}^{ - az}}, {{\text{e}}^{ - bz}}) 。引入层间连续条件,并结合式(25),(26),可获得相邻层间的单元刚度矩阵:

    \left[ {\begin{array}{*{20}{c}} {{{\tilde {\bar S}}_2}({z_{n - 1}})\left| {_n} \right.} \\ { - {{\tilde {\bar S}}_2}({z_n})\left| {_{n + 1}} \right.} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\bar K_1^n}&{\bar K_2^n} \\ { - \bar K_3^n}&{ - \bar K_4^n} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\tilde {\bar S}}_1}({z_{n - 1}})\left| {_n} \right.} \\ {{{\tilde {\bar S}}_1}({z_n})\left| {_{n + 1}} \right.} \end{array}} \right] , (27)

    式中,

    \left. \begin{array}{l} {\overline{K}}_{1}^{n}=({D}_{\text{d}n}{S}_{\text{u}n}-{D}_{\text{u}n}{S}_{\text{d}n}){\varLambda }^{-1}({h}_{n})\varPhi \text{ }, \\ {\overline{K}}_{2}^{n}=(-{D}_{\text{d}n}{S}_{un}{\left[{\varLambda }^{-1}({h}_{n})\right]}^{2}+{D}_{\text{u}n}{S}_{\text{d}n})\varPhi \text{ }, \\ {\overline{K}}_{3}^{n}=\{{D}_{\text{d}n}{S}_{\text{u}n}\text{ }+{\tilde{F}}_{n}{S}_{\text{d}n}{S}_{\text{u}n}-({D}_{\text{u}n}{S}_{\text{d}n}+{\tilde{F}}_{n}{S}_{\text{d}n}{S}_{\text{u}n}){\left[{\varLambda }^{-1}({h}_{n})\right]}^{2}\}\varPhi \text{ }, \\ {\overline{K}}_{4}^{n}=({D}_{\text{u}n}{S}_{\text{d}n}-{D}_{\text{d}n}{S}_{\text{u}n}){\varLambda }^{-1}({h}_{n})\varPhi \text{ }, \end{array} \right\} (28)

    式中, \varPhi = \left\{ {{D_{{\text{d}}n}}{D_{{\text{u}}n}}} \right. + {D_{{\text{u}}n}}{\tilde F_n}{S_{{\text{d}}n}} - ({D_{{\text{d}}n}}{D_{{\text{u}}n}} + {D_{{\text{d}}n}}{\tilde F_n}{S_{{\text{u}}n}}) \times {\left. {{{\left[ {{\varLambda ^{ - 1}}({h_n})} \right]}^2}} \right\}^{ - 1}} 。引入边界条件\tilde {\bar S}\left| {_N} \right.(z \to \infty ) = {{\text{0}}_{4 \times 1}},并结合路基通解公式,可获得路基表面状态向量满足下式:

    {\tilde {\bar S}_2}({z_{N - 1}})\left| {_N} \right. = \bar K_1^N{\tilde {\bar S}_1}({z_{N - 1}})\left| {_N} \right. , (29)

    式中, \bar K_1^N = {S_{{\text{d}}N}} \cdot D_{{\text{d}}N}^{ - 1} {D_{{\text{d}}N}} = \left[ {\begin{array}{*{20}{c}} {{M_{11}}(\Xi )}&{{M_{12}}(\Xi )} \\ {{M_{21}}(\Xi )}&{{M_{22}}(\Xi )} \end{array}} \right] {S_{{\text{d}}N}} = \left[ {\begin{array}{*{20}{c}} {{M_{{\text{3}}1}}(\Xi )}&{{M_{{\text{3}}2}}(\Xi )} \\ {{M_{{\text{4}}1}}(\Xi )}&{{M_{{\text{4}}2}}(\Xi )} \end{array}} \right]

    在单元刚度矩阵的基础上,结合式(27),(29),可组建路面结构的总体刚度矩阵方程:

    \left[ {\begin{array}{*{20}{c}} {\bar K_1^1}&{\bar K_2^1}&{}&{} \\ { - \bar K_3^1}&{ - \bar K_4^1 + \bar K_1^2}&{\bar K_2^2}&{} \\ {}&{...}&{...}&{...} \\ {}&{}&{ - \bar K_3^{N - 1}}&{ - \bar K_4^{N - 1} + \bar K_1^N} \end{array}} \right] \times \\ \left[\begin{array}{c}{\tilde{\overline{S}}}_{1}(0)|{}_{1}\\ {\tilde{\overline{S}}}_{1}({z}_{1})|{}_{2}\\ \mathrm{...}\\ {\tilde{\overline{S}}}_{1}({z}_{N-1})|{}_{N}\end{array}\right]=\left[\begin{array}{c}0\\ -\tilde{\overline{p}}(\xi , s)\\ {\text{0}}_{(2N-2)\times 1}\end{array}\right]\text{ }, (30)

    式中,\tilde {\bar p}(\xi , s)为Hankel-Laplace变换后的表面荷载条件, \tilde {\bar p}(\xi , s) = \left( {1 + {{\text{e}}^{ - s{T_0}}}} \right){\text{J}_1}({r_0}\xi ){T_0}{{\rm{ \mathsf{ π} }} }{r_0}{p_{\max }}{({s^2}T_0^2 + {{{\rm{ \mathsf{ π} }} }^2})^{ - {\text{1}}}}{\xi ^{ - {\text{1}}}} 。求解式(30)所示矩阵方程,即可得到任意层状态向量。

    前文仅能获得在Hankel-Laplace域内应力响应结果,为得时域结果通常还需进行数值积分逆运算[23]。考虑到精度要求,采用20节点Gauss插值积分以及Durbin法分别进行Hankel逆变换和Laplace逆变换:

    f(r, {t_l}) = \frac{{2{{\text{e}}^{\gamma l\Delta t}}}}{T}{\rm{R} _e}\left\{ { - \frac{1}{2}{\bar f}(r, z, \gamma )} \right. + \\ {\displaystyle \sum _{k=0}^{{N}_{a}-1}{\displaystyle \sum _{\nu =0}^{L}\left[\overline{f}\left(r, z, \gamma +\text{j}(k+\nu {N}_{\text{a}})\frac{2{\rm{ \mathsf{ π} }} }{T}\right)\cdot {\text{e}}^{j\frac{2{\rm{ \mathsf{ π} }} }{{N}_{\text{a}}}kl}\right]\}\text{ }}}, (31)
    \overline{f}(r, s)\approx {\displaystyle \sum _{i=1}^{{N}_{0}}{\displaystyle \sum _{k=1}^{20}{A}_{k}\left[{x}_{ik}\tilde{\overline{f}}\left({x}_{ik}, z, s\right)\text{J}({x}_{ik}r)\right]}}\text{ }。 (32)

    式中 f(r, t), {\bar f}(r, s), \tilde {\bar f}(\xi , s) 为时域、Laplace域以及Hankel-Laplace域内函数;N0为高斯积分分段总数,N0=ceil(χL),χ为高斯插值积分计算上限,ΔL为高斯积分的分段长度,ceil(∙)为向上取整计算;Ak为高斯积分系数;xik为高斯积分第i段第k个积分点,xik=(i-1)∙ΔL+xkxk为20节点高斯积分点;T是总求解时间,T=60 ms;Na为总求解步,Na=60;Δt为求解步长,Δt=1 ms,T=Na×Δttl为求解时刻,tl=lT/Nal为求解序列;L \gamma 为计算参数,取L=ceil(200/ Na)=4, \gamma =10/T=166.6;j为单位虚数,j2=-1。

    在计算时,需进一步确定式(32)中高斯数值积分上限χ,分段长度ΔL,以及式(24)中无穷级数上限n0。如表 1所示,引入Burgers模型(图 2)来表征沥青面层黏弹性,其Laplace域内表达式如式(33)所示,表中参数取值参考文献[34]。荷载为半正弦波形式,峰值pmax=707 kPa,持续时间T0=30 ms,作用半径0.15m。分三步进行收敛分析;首先,在ΔL=5,n0=100基础上,χ分别取50,100,300,500;其次,在χ=300,n0=100基础上,ΔL分别取2,5,10,15,30;最后,在ΔL=5以及χ=300基础上,n0分别取20,40,60,80,100,200,结果如图 3所示。考虑到精度和效率,本文取χ=300,ΔL=5,n0=100。

    {E_{\text{v}}}(s) = \frac{{({E_1}{\eta _2} + {\eta _1}{\eta _2}s){E_2}s}}{{{E_1}{E_2} + ({E_1}{\eta _2} + {E_2}{\eta _1} + {E_2}{\eta _2})s + {\eta _1}{\eta _2}{s^2}}} , (33)
    表  1  路面结构层材料参数
    Table  1.  Material parameters of pavement structure
    层位 垂直模量/MPa ne(Eh/Ev) ?v(?h) 密度/(kg∙m-3) 厚度/m 层间滑移系数αx
    面层 Burgers
    模型
    0.2 0.25 2400 0.18 0.8
    基层 910 0.4 0.30 2300 0.35 0.7
    底基层 350 0.5 0.35 2200 0.20 0.0
    路基 300~
    200e-0.2z
    1.0 0.35 1600
    下载: 导出CSV 
    | 显示表格
    图  2  Burgers模型
    Figure  2.  Burgers model
    图  3  数值计算收敛研究
    Figure  3.  Researches on convergence of numerical computation

    式中,E1E2η1η2为Burgers模型参数,s为Laplace变换积分变量,参数取值如表 1所示。

    应用ABAQUS以及已有文献结果进一步验证解析解。如图 4所示,构建4层轴对称路面结构有限元模型,其路面厚度、密度、泊松比取值均与表 1对应参数相同,通过改变接触面上的水平向摩擦系数来实现层间非完全连续;模型单元类型均为CAX4环单元。网格采用渐变划分方式,网格尺寸从左到右为0.03~0.5 m,从上到下为0.06~0.5 m。采用隐式动力求解器,求解时间为60 ms,计算步长1 ms。另外,采用UMAT子程序来实现路基模量沿深度方向的非均匀分布,采用2阶Prony级数(式(34))以模拟Burgers四元黏弹性模型。分别采用ABAQUS以及MATLAB计算如表 2所示的2种情况下r为0.0,0.3 m处的弯沉。在计算时,设定路基模量Ev=Ev0+1-e-5z来似描述匀质模量场,刚性基岩通过设置6000 MPa的路基来模拟。除有限元验证外,选用文献[2528]进行对比验证。有限元结果如图 5所示,文献对比如图 6所示。由图 5可见,层间接触条件与路基模量非均匀分布均能产生波反射现象,这更符合FWD实际测试结果;且ABAQUS完成计算需花费2~3 min,而解析解在90 s以内即可完成计算(intel i7 8750H,8G)。由图 6可见,退化后的解析解与文献[2528]结果高度一致。因而,所推导解析解具有较高的精度以及计算效率。

    {G_{\text{R}}}(t) = {G_{\text{0}}}\sum\nolimits_{k = 1}^2 {g_k^{\text{p}}{{\text{e}}^{ - t/\tau _k^G}}} , (34)
    图  4  有限元与荷载模型
    Figure  4.  Finite element model and load model
    表  2  有限元计算参数取值
    Table  2.  Finite element parameters
    计算情况 ne1 (Eh/Ev) \alpha _x^1 \alpha _x^2 \alpha _x^3 路基模量Ev /MPa
    情况1 1.0 0 0 0 300~200e-0.2z
    情况2 1.0 0.999 0.999 0.0
    注:表格中未说明参数取值均与表 1相同。
    下载: 导出CSV 
    | 显示表格
    图  5  有限元计算结果对比
    Figure  5.  Comparison of calculated results
    图  6  文献对比验证
    Figure  6.  Comparative verification

    式中, {G_{\text{0}}} 为初始剪切模量, g_k^{\text{p}} 为级数系数, \tau _k^{\text{G}} 为松弛时间。结合图 2,并结合松弛模量等效原则[35],有 {G}_{0}=920\text{ MPa},{g}_{1}^{\text{p}}=0.23,{g}_{2}^{\text{p}}=0.77,{\tau }_{1}^{\text{G}}=0.67\text{ s},{\tau }_{\text{2}}^{\text{G}}= 0.09{\text{ s}}

    在参数收敛分析以及可靠性验证基础上,本部分主要对路面结构层层间滑移系数 {\alpha _x} 、路面结构层模量比ne、路基模量非均匀分布系数?和Ξ、路基模量比ne4等4个因素开展参数讨论及分析。由于篇幅有限,这里仅对路表弯沉进行讨论,而不涉及剪应力和应变,这并不意味所推导解析解仅能用于计算路表弯沉。计算中未特别说明的参数取值均同表 1

    设定面层底部、基层底部滑移系数 {\alpha _x} 分别为0.99,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.0,并分别计算其表面弯沉响应。在此基础上,绘制如图 7所示的层底滑移系数–弯沉峰值云图以及弯沉盆曲线。从图 7中可见,路面结构层间滑移系数对弯沉具有显著影响,其影响可达63%。如图 7(a)所示,面层底部和基层底部滑移系数的影响基本相当,云图等高线基本呈现环形分布。如图 7(b)所示,层间接触条件主要影响r < 1.2 m范围内的弯沉盆曲线。

    图  7  滑移系数αx影响
    Figure  7.  Influences of slip coefficient on deflection

    设定面层、基层、底基层模量比ne为0.05~1.00,并分别计算其表面弯沉响应。为便于后续分析,在计算时,假定基层模量比ne2与底基层模量比ne3相等,并绘制如图 8所示的模量比–弯沉峰值云图以及弯沉盆曲线。从图 8中可见,路面结构模量比同样对路表弯沉具有显著影响,其影响最大可达70%以上。与滑移系数影响相似,模量比主要影响r < 1.2 m范围内的弯沉盆曲线。

    图  8  模量比ne影响
    Figure  8.  Influences of modulus ratio on deflection

    值得注意的是,当Ξ < 0.5同时? < 0.3时,矩阵M(\xi , s, \psi )[式(24)]易接近奇异矩阵而导致计算失败。因而,在路基顶面模量Ev0=100 MPa条件下,分别假定Ξ=0.5~0.8,?=0.3~10.0,结果如图 910所示。如图所示,相比路面结构参数,路基模量非均匀分布对弯沉盆的影响范围更大且更为均匀,且对荷载中心处弯沉峰值影响可达40%以上。

    图  9  路基变模量参数–弯沉峰值云图(r=0.0 m)
    Figure  9.  Cloud map of non-uniform distribution coefficient and deflection peak of subgrade (r=0.0 m)
    图  10  弯沉盆曲线(?, Ξ影响)
    Figure  10.  Curves of deflection basin under influence of ?, Ξ

    在前述路基非均匀分布参数取值基础上,假定路基模量比neN分别为1.0,1.5,2.0,2.5和3.0。结果如图 1112所示。由图 11可见,路基模量比neN与路表弯沉峰值间存在较为明显的线性关系,且斜率基本不受路基模量非均匀分布系数?和Ξ影响。由图 12可见,路基模量比对弯沉盆的影响与非均匀分布系数类似,能影响整条弯沉盆曲线,但影响不及其他因素,其对弯沉峰值影响基本在10%以内。

    图  11  路基模量比 {n_{eN}} 影响探究(r=0.0 m)
    Figure  11.  Researches on influence of subgrade modulus ratio {n_{eN}} (r=0.0 m)
    图  12  弯沉盆曲线(路基模量比影响)
    Figure  12.  Curves of deflection basin under influence of subgrade modulus ratio

    本文推导了FWD作用下轴对称路面结构动力响应解析解,并考虑了路面结构所存在的黏弹性、横观各向同性以及层间接触状态,以及路基模量沿深度方向的非线性分布特征,得到3点结论。

    (1)对于路面结构,层间滑移系数αx以及模量比ne均可对路表弯沉峰值具有显著影响,其影响均可达60%以上,但主要影响r < 1.2 m范围内的弯沉盆曲线,在路面力学分析中应充分考虑。

    (2)对于路基结构,随着非均匀分布系数?,Ξ以及模量比neN的增大,表面弯沉均呈现下降趋势。其中,路基模量比neN与路表弯沉峰值间存在较为明显的线性关系,且斜率基本不受路基模量非均匀分布的影响。相比路面结构参数,路基结构参数对弯沉盆的影响范围更大。

    (3)对于解析解及计算方法,在高斯插值积分上限取χ=300,分段长度ΔL=5,级数项数n0=100时具有较高的计算精度及计算效率,可作为路面结构设计及FWD等原位无损检测设备的高精度力学计算模型。

  • 图  1   拟静力试验布置图

    Figure  1.   Schematic diagram of test layout

    图  2   加载制度

    Figure  2.   Protocol of cyclic lateral loading

    图  3   土体破坏示意图

    Figure  3.   Diagram of soil failure

    图  4   基桩与承台连接处的破坏形态

    Figure  4.   Pile-to-cap connection failure

    图  5   群桩基础基桩破坏形态

    (从左往右桩号依次#2,#1,#4,#5,#3)

    Figure  5.   Failure modes of piles

    图  6   滞回曲线

    Figure  6.   Experimental force-displacement curves

    图  7   骨架曲线

    Figure  7.   Envelope curve

    图  8   桩身弯矩分布变化图

    Figure  8.   Pile bending moment diagrams

    图  9   中桩桩身挠度变化曲线

    Figure  9.   Deflection curves of middle pile section

    图  10   桩身应变能变化曲线

    Figure  10.   Strain energy curves of piles

    表  1   钢筋混凝土群桩基础拟静力试验

    Table  1   Overview of quasi-static tests on pile groups

    文献 土体 桩布置 B S α
    Lemnitzer等[13] 黏土 3×3 0.61 3B <0.10
    Zhou等[14] 等效土体 3×3 0.09 <6B <0.10
    Wang等[15] 砂土 2×3 0.15 3B <0.05
    Guan等[16] 砂土 2×2 0.20 3.5B 0.12
    张永亮等[17] 黄土 2×4 0.16 <4B <0.15
    Liu[18] 砂土 2×2 0.15 3B 0.05
    砂土 2×3 0.15 3B 0.05
    本文研究 黏土 十字 0.10 6B 0.45
    注:B为桩的直径或边长,单位均为m。S为桩的中心距。各基桩轴压比 \alpha = P/{f_{\text{c}}}A ,其中P是每个基桩桩顶的竖向荷载, {f_{\text{c}}} 为桩身混凝土轴心抗压强度设计值,A为桩身横截面积。
    下载: 导出CSV

    表  2   土的物理力学参数

    Table  2   Physical and mechanical properties of soil

    w/% ρ/(kg·m-3) ρd/(kg·m-3) e φ/(°) c/kPa E0/kPa
    14.88 1720 1490 0.83 19.40 15 13290
    注:w为含水率;ρ为天然密度;ρd为干密度;e为孔隙比;φ为土体内摩擦角;c为黏聚力;E0为土体的变形模量。
    下载: 导出CSV

    表  3   群桩基础基桩破坏位置

    Table  3   Location of plastic hinge underground

    基桩(D=100 mm) #1 #2 #3 #4 #5
    La 3.5D 3.10D 4.45D 3.6D 3.05D
    Lb 11.05D 10.00D 11.05D 10.00D 11.05D
    注:La桩头塑性铰埋置深度(从桩顶计算);Lb环状裂缝出现范围(从桩顶部计算);#1,#2,#3,#4,#5是基桩的编号。
    下载: 导出CSV

    表  4   群桩基础的骨架曲线特征点

    Table  4   Feature points information

    加载方向 弹性极限 屈服极限 极限荷载
    ΔE PE/kN ΔY PY/kN ΔU PU/kN
    东向 0.05D 34 0.14D 46 0.42D 51
    西向 -0.05D -38 -0.11D -48 -0.42D -55
    注:Δ表示各个阶段极限状态点对应的加载位移;P为表示各个阶段极限状态点对应的荷载,各个符号下标中的E代表弹性,Y代表屈服点,U代表极限点。D为桩的直径,D=100 mm。
    下载: 导出CSV
  • [1] 朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm

    ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3d nonlinear response characteristics of the pile-raft-supported ap1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(1): 129-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm

    [2] 陈达. 核能与核安全: 日本福岛核事故分析与思考[J]. 南京航空航天大学学报, 2012, 44(5): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201205004.htm

    CHEN Da. Nuclear energy and nuclear safety: analysis and reflection about Fukushima nuclear accident[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 597-602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201205004.htm

    [3] 景立平, 吴凡, 李嘉瑞, 等. 土-桩基-隔震支座-核岛地震反应试验研究[J]. 岩土力学, 2022, 43(9): 2483-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209014.htm

    JING Liping, WU Fan, LI Jiarui, et al. Experimental study on seismic response of soil-pile foundation-isolation supportnuclear island[J]. Rock and Soil Mechanics, 2022, 43(9): 2483-2492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209014.htm

    [4] 刘晶波, 王菲, 孙运轮. 大飞机撞击钢筋混凝土核安全壳模型试验研究[J]. 建筑结构学报, 2022, 43(8): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202208018.htm

    LIU Jingbo, WANG Fei, SUN Yunlun. Experimental study on a large aircraft impacting reinforced concrete nuclear containment structure model[J]. Journal of Building Structures, 2022, 43(8): 185-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202208018.htm

    [5]

    ALLOTEY N, EI NAGGAR M H. A numerical study into lateral cyclic nonlinear soil-pile response[J]. Canadian Geotechnical Journal, 2008, 45(9): 1268-1281. doi: 10.1139/T08-050

    [6]

    ASHOUR M, HELAL A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering, 2014, 19(2): 289-302. doi: 10.1061/(ASCE)BE.1943-5592.0000505

    [7]

    ABBASI H, BINESH S, LASHKARI A. Using a state-dependent constitutive model in strain wedge method for laterally loaded piles in sand[J]. Soils and Foundations, 2019, 59(2): 271-283. doi: 10.1016/j.sandf.2018.10.007

    [8]

    ASHOUR M, NORRIS G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 420-428. doi: 10.1061/(ASCE)1090-0241(2000)126:5(420)

    [9]

    ASHOUR M, PILLING P, NORRIS G. Lateral behavior of pile groups in layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 580-592. doi: 10.1061/(ASCE)1090-0241(2004)130:6(580)

    [10]

    BROWN DAN A, CHINE-FENG S. Some numerical experiments with a three dimensional finite element model of a laterally loaded pile[J]. Computers and Geotechnics, 1991, 12(2): 149-162. doi: 10.1016/0266-352X(91)90004-Y

    [11]

    YANG K, LIANG R. Numerical solution for laterally loaded piles in a two-layer soil profile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1436-43. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1436)

    [12] 汪刚, 景立平, 李嘉瑞, 等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3414-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2040.htm

    WANG Gang, JING Liping, LI Jiarui, et al. Shaking table test study on seismic-soil-pilesuperstructure-interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3414-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2040.htm

    [13]

    LEMNITZER A, KHALILI-TEHRANI P, AHLBERG E R, et al. Nonlinear efficiency of bored pile group under lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1673-1685.

    [14]

    ZHOU M, YUAN W, ZHANG Y. Seismic material properties of reinforced concrete and steel casing composite concrete in elevated pile-group foundation[J]. Polish Maritime Research, 2015, 22(S1): 141-8.

    [15]

    WANG X, YE A, HE Z, et al. Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures[J]. Journal of Bridge Engineering, 2016, 21(2): 04015042.

    [16]

    GUAN Z, CHEN X, LI J. Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundations[J]. Engineering Structures, 2018, 168: 889-902.

    [17] 张永亮, 宁贵霞, 陈兴冲, 等. 桥梁群桩基础非线性受力特征及影响参数分析[J]. 公路交通科技, 2018, 35(7): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807007.htm

    ZHANG Yongliang, NING Guixia, CHEN Xingchong, et al. Analysis on nonlinear loading characteristics and influence parameters of group pile foundation of bridge[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807007.htm

    [18]

    LIU T, WANG X, YE A. Roles of pile-group and cap-rotation effects on seismic failure mechanisms of partially-embedded bridge foundations: Quasi-static tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106074.

    [19] 景立平, 汪刚, 李嘉瑞, 等. 土-桩基-核岛体系动力相互作用振动台试验及数值模拟[J]. 岩土工程学报, 2022, 44(1): 163-172, I0009, I0010. doi: 10.11779/CJGE202201016

    JING Liping, WANG Gang, LI Jiarui, et al. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163-172, I0009, I0010. (in Chinese) doi: 10.11779/CJGE202201016

    [20]

    WANG X, YE A, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-37.

    [21]

    SERRAS DIONISIOS N, PANAGAKI STAMATIA D, SKALOMENOS KONSTANTINOS A, et al. Inelastic lateral and seismic behaviour of concrete-filled steel tubular pile foundations[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106657.

    [22]

    ELNASHAI A S, DI SARNO L. Fundamentals of Earthquake Engineering[M]. Chichester, West Sussex, UK: Wiley, 2008.

    [23] 崔春义, 辛宇, 许成顺, 等. Pasternak层状地基中群桩水平动力响应解析解答[J]. 岩土工程学报, 2023, 45(5): 893-902. doi: 10.11779/CJGE20220235

    CUI Chunyi, XIN Yu, XU Chengshun, et al. Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 893-902. (in Chinese) doi: 10.11779/CJGE20220235

    [24]

    SUN S, MA D, ZHOU G. Applications and analysis of the composite wall on construction in heilongjiang province[J]. Procedia Engineering, 2015, 118: 160-8.

    [25]

    ZHANG Y, CHEN X, ZHANG X, et al. Nonlinear response of the pile group foundation for lateral loads using pushover analysis[J]. Earthquakes and Structures, 2020, 19(4): 273-86.

图(10)  /  表(4)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  47
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 网络出版日期:  2023-03-05
  • 刊出日期:  2023-09-30

目录

/

返回文章
返回