Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine
-
摘要: 四川地区降雨蒸发、库区水位涨落等因素严重影响该地区边坡工程的稳定性。以盐水(5%NaCl)为浸泡溶液对不同干湿循环次数(0,5,10,20次)作用后饱和砂岩开展三轴压缩试验,分析其物理力学参数劣化规律,进而揭示盐水和干湿循环共同作用对饱和砂岩的损伤机理。研究结果表明:随着干湿循环次数增加,砂岩质量先增加后降低,而渗透率先降低后增加,干湿循环5次为试样质量变化率和渗透率的阈值;干湿循环作用后试样的峰值强度、内摩擦角、黏聚力以及弹性模量均小于干燥砂岩,并且随循环次数增加,试样峰值强度、黏聚力逐渐降低,而内摩擦角表现为先减小后增加;试样弹性模量随围压增加呈不同变化趋势;干湿循环对砂岩破坏模式无明显影响,即单轴和三轴压缩下试样分别呈轴向劈裂和剪切破坏。在干湿循环过程中,砂岩内部矿物颗粒逐渐流失,造成内部孔隙增大,是诱发岩石产生损伤的根本原因。Abstract: The factors such as rainfall evaporation and groundwater fluctuation in Sichuan Province of China seriously affect the stability of slope engineering in the area. The deterioration laws of physical and mechanical parameters of saturated sandstone after different drying-wetting cycles (0, 5, 10 and 20 times) in brine (5%NaCl) solution are analyzed by conducting the triaxial compression tests. The damage mechanisms of the brine and drying-wetting cycles on saturated sandstone are revealed. The results show that the sandstone mass increases first and then decreases, while the permeability decreases first and then increases with the increase of the number of drying-wetting cycles. The threshold value for the mass change rate and permeability is 5 drying-wetting cycles. The peak strength, internal friction angle, cohesion and elastic modulus of the samples after drying-wetting cycles are all smaller than those of the dry sandstone. The peak strength and cohesion of the samples decrease gradually, while the internal friction angle decreases first and then increases with the increase of the cycles. The elastic modulus of the samples shows different trends with the increase of the confining pressure. The drying-wetting cycles have no significant effects on the failure mode of the sandstone, that is, the samples under uniaxial and triaxial compressions exhibit axial splitting and shear failure respectively. In the process of drying-wetting cycles, the mineral particles in the sandstone are gradually lost, resulting in the increase of the internal pores, which is the fundamental cause of inducing rock damage.
-
Keywords:
- drying-wetting cycle /
- brine /
- saturated sandstone /
- permeability /
- mechanical property
-
0. 引言
江苏各市广泛分布的软弱土,具有高含水率、高压缩性、低渗透性、低抗剪强度、高含盐量及显著的结构性与流变性等特点,对其处理较为复杂。针对此类软黏土,电渗法有较好的处理效果,但是电渗法存在耗能过高、加固不均匀的问题[1]。为缓解城市用地紧张,根据已有研究成果,提高电渗加固软土性能主要有两种研究思路:①通过改变电极材料[2-3]、电极布置形式[4-5]和通电方式[6]等初始条件;②将电渗与其它方法联合使用,常见的有电渗-堆载[7]、电渗-真空预压[8]、化学电渗[9]等。本研究在第二种思路的基础上,将电渗法与堆载预压和化学灌浆结合,以期使电渗法更加经济可行。为探讨该法的可行性,本文开展电渗-堆载-化学灌浆联合法(Electro-Osmosis-Surcharge Preloading-Chemical Grouting,简称EO-SC-CG)和化学电渗(Electro-Omosis-Chemical Grouting,简称EO-CG)的对比试验,从排水量、通电电流、有效电势、十字板剪切强度、含水率等方面证实电渗-堆载-化学灌浆联合法的有效性。
1. 试验材料与试验方法
1.1 试验材料
室内模型试验所用土样为取自江苏盐城地区的滩涂软土,通过室内土工试验对软土的基本物理性质进行测试。试验前,将原状土烘干后击碎,然后倒入搅拌桶中充分搅拌均匀后静置24 h,再对软土进行重塑,使试验用滩涂软土的含水率达到40%,最终得到重塑土的基本物理性质指标如表1所示。
表 1 重塑土的基本指标Table 1. Basic parameters of remolded soil含水率 w/% 液限wL/% 塑限wP/% Gs 不排水抗剪强度cu/kPa 40 30.8 13.9 2.71 ≈0 1.2 试验装置
室内模型试验(EO-SC-CG与EO-CG)采用自制试验装置,主要由土样室和排水室两部分组成,其中排水室内的排水孔为直径25 mm的圆形孔洞,如图1所示。EO-CG装置模型与前者相同,区别仅在于EO-CG方法没有施加充当均布荷载的上覆砂。模型箱采用亚克力板材制成,模型箱尺寸为400 mm×300 mm×200 mm。阳极采用尺寸为350 mm×150 mm×3 mm的铁板;阴极所用电极尺寸与阳极相同,在电极板上均匀打下48个孔径为4 mm的小孔。注浆管采用内径9 mm,外径11 mm的PVC管,管壁均匀设置小孔,并将管底封闭,有利于注入的化学浆液向土体扩散,同时能够有效控制化学浆液过快的向土体底部沉积。阴极注浆材料选用Na2SiO3溶液,阳极注浆材料选用CaCl2溶液[10]。电导线采用多股铜芯电导线,导体材质为无氧铜,绝缘材料为聚氯乙烯。装置图1的上覆砂均匀铺在土样层上,既起到堆载的作用,又可以消除电渗模型几何边界引起的尺寸效应[11]。
1.3 试验方案
本文主要研究EO-SC-CG与EO-CG两种加固方法对盐城地区滩涂软土的加固效果,试验分为两组,基本参数如表2所示。试验的初始含水率为40%,电势梯度选取1 V/cm[12],电源电压均为23 V。
表 2 试验基本参数Table 2. Basic parameters of experiments组别 试验时间/h 堆载大小/kPa 注浆材料与注浆量 EO-SC-CG 48 1.5 CaCl2 (45mL)+Na2SiO3(45mL) EO-CG 48 0 CaCl2(45mL)+Na2SiO3(45mL) 试验开始前,将阳极电极放置在远离排水室一侧,阴极电极放置在靠近排水室一侧;两侧注浆管均放置在距电极3 cm处;分别放置两根测针在电极与注浆管中间。因为EO-SC-CG涉及施加堆载时间,故先开展EO-CG试验。两组试验开始通电后实时观测记录通电电流,电势与排水量。待排水量不再增加时,关闭电源,分上、中、下三层按距离阳极0,5,10,15,20 cm,取土样测量十字板剪切强度与含水率,土样测试点位置如图2所示。过程中两组试验注浆时间均定在电流大幅降低且保持稳定的时刻。依据袁国辉[13]进行的电渗-堆载联合试验,当电渗固结度达到40%时为最佳堆载时间。故EO-SC-CG可根据EO-CG得到最终沉降量S∞,利用平均固结度表达式:Uavg=St / S∞,得到固结度达到40%时的沉降量,施加堆载。
2. 试验结果与分析
2.1 排水量与排水速率
排水量与排水速率随时间的变化曲线如图3所示。因为施加堆载的作用,EO-SC-CG的排水量最终高于EO-CG。两组试验的排水量分别为1360,1170 mL,EO-SC- CG的排水量相对EO-CG增加16.2%。由图3可知,排水速率随时间呈现出逐渐减小的趋势,并且在化学注浆后排水速率均会先达到一个峰值点,之后逐步下降。EO-CG和EO-SC-CG分别在试验进行至10 h和8 h时注浆,注浆后排水速率1 h内增幅分别约为28.9%和14.3%,达到峰值时增幅分别约为34.1%和37.5%。因堆载预压的加持作用,EO-SC-CG的峰值增幅稍大。结合微观观测,随着电渗的进行,注入的浆液在直流电作用下生成CaSiO3并填充土体孔隙,导致土体的渗透性降低,进而影响土体的排水速率。试验后期,EO-SC-CG的排水速率高于EO-CG,说明EO-SC-CG因施加堆载预压,在一定程度上能够缓解土体后期排水效果较差的趋势。
2.2 有效电势
有效电势随时间的变化曲线如图4所示。由图4可知,两组试验的有效电势均呈现出先增加后减小的趋势,且其变化速率在注浆后都呈现出加快的趋势,说明注浆后,土中可移动的离子浓度增加,促进了土体内的离子移动速率,导致电阻减小,有效电势增加。EO-SC-CG在11 h施加堆载时,其有效电势较前一时刻没有明显变化,且达到第一次峰值的时间与EO-CG基本一致,说明施加堆载对有效电势的提升有限。两组试验的有效电势在第一次峰值后均呈现下降趋势,但是EO-SC-CG的下降速率较缓。因为阳极不断发生电化学反应,生成的胶结物附在土体表面,导致电极与土体接触界面上电阻增大,有效电势减小;加之阳极附近土中的水不断向阴极移动,致使阳极区土体失水产生裂缝,接触电阻增大。而EO-SC-CG的有效电势下降速率较缓是因为堆载作用能够有效抑制裂缝的产生,使得电阻增大缓慢。比较两组试验后期的曲线可知,EO-SC-CG的有效电势相对较大,进一步说明堆载作用在一定程度上能够抑制裂缝产生,减缓有效电势的减少,使有效电势总体上变化较为均匀。
2.3 十字板剪切强度与最终含水率
将所得结果在同一距离不同深度的强度以及含水率取均值,得到抗剪强度与最终含水率在电极间的分布如图5所示。由图5可知,抗剪强度随距阳极的距离增大而减小,阳极附近土体的抗剪强度最大。土中的水在电渗作用下,自阳极移动至阴极,阳极附近因为铁质电极的腐蚀,生成Fe2+、Fe3+的氧化物与氢氧化物等,一定程度上能够胶结土体。同时因为注浆作用,阳极附近发生化学反应生成Ca(OH)2、CSH和CAH等填充土体孔隙,使阳极附近的土体强度得到提升。两组试验中,EO-SC-CG的平均抗剪强度相对EO-CG提高约14%,故堆载对土体抗剪强度的提升具有一定作用。因为堆载产生的自重作用对土体进行了压密,导致土体抗剪强度的提升。由于电渗作用,孔隙水不断自阳极流向阴极,含水率的分布呈现出从阳极到阴极逐步增大的规律。相比EO-CG,EO-SC-CG处理后的土体含水率较低,减少约17.8%。将同一深度不同距离的抗剪强度与含水率取均值,得到抗剪强度与最终含水率随深度分布如图6所示。由图6可知,土体的抗剪强度沿深度逐渐降低,呈现出表层>中层>底层的规律,EO-SC-CG得到的平均强度相比EO-CG提高了14%。相比EO-CG,EO-SC-CG试验处理后同一深度的土体含水率较低,减少约17.6%。
3. 结论
通过电渗-堆载-化学灌浆与电渗-化学灌浆两组室内试验,分析试验过程中排水量、排水速率、有效电势、十字板剪切强度与含水率等,得以下结论:
(1)在EO-CG的基础上增加堆载对电渗排水有一定的促进作用,相对EO-CG,EO-SC-CG的排水速率增加25.8%,平均抗剪强度提高14%。同时,EO-SC-CG的有效排水时间更长,堆载作用在一定程度上能减缓土体后期排水速率降低的趋势。
(2)堆载一定程度上抑制裂缝产生,阻止有效电势减少,进而使有效电势总体上变化较均匀。
(3)EO-SC-CG不仅能促进土体排出水分,提高土体的密实度与强度,同时也能改善电极与土的接触性,实现电渗、化学灌浆和堆载预压的共同加固。
-
表 1 干湿循环作用后饱和砂岩试样矿物成分
Table 1 Mineral composition of saturated sandstone samples after drying-wetting cycles
循环次数 矿物成分含量/% 石英 白云母 高岭石 斜长石 钾长石 5 84.02 6.06 3.3 4.46 2.16 10 82.40 5.42 4.94 3.37 3.88 20 86.10 3.56 3.62 3.03 3.69 -
[1] 胡泽铭. 四川红层地区缓倾角滑坡成因机理研究[D]. 成都: 成都理工大学, 2013. HU Zeming. Study on Genesis Mechanism of Slow Dip Slope Landslide in Sichuan Red Bed Area[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese)
[2] RIEMER W. Landslides and reservoirs[C]// Proceedings of the 6th International Symposium Landslides. Rotterdam: BalkemaA. A, 1995, 1973-2004.
[3] 崔凯, 顾鑫, 吴国鹏, 等. 不同条件下贺兰口岩画载体变质砂岩干湿损伤特征与机制研究[J]. 岩石力学与工程学报, 2021, 40(6): 1236-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106014.htm CUI Kai, GU Xin, WU Guopeng, et al. Dry-wet damage characteristics and mechanism of metamorphic sandstone carrying Helan mouth's rock paintings under different conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1236-1247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106014.htm
[4] ZHANG Z, JIANG Q, ZHOU C, et al. Strength and failure characteristics of Jurassic Red-Bed sandstone under cyclic wetting-drying conditions[J]. Geophysical Journal International, 2014, 198(2): 1034-1044. doi: 10.1093/gji/ggu181
[5] 刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. doi: 10.11779/CJGE201607017 LIU Xinrong, LI Dongliang, ZHANG Liang, et al. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. (in Chinese) doi: 10.11779/CJGE201607017
[6] 朱江鸿, 韩淑娴, 童艳梅, 等. 干湿循环对不同密度砂岩强度劣化的影响[J]. 华南理工大学学报(自然科学版), 2019, 47(3): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm ZHU Jianghong, HAN Shuxian, TONG Yanmei, et al. Effect of dry-wet cycles on the deterioration of sandstone with various initial dry densities[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(3): 126-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm
[7] 周翠英, 邓毅梅, 谭祥韶, 等. 饱水软岩力学性质软化的试验研究与应用[J]. 岩石力学与工程学报, 2005, 24(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm ZHOU Cuiying, DENG Yimei, TAN Xiangshao, et al. Experimental research on the softening of mechanical properties of saturated soft rocks and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 33-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm
[8] 崔凯, 吴国鹏, 王秀丽, 等. 不同水岩作用下板岩物理力学性质劣化实验研究[J]. 工程地质学报, 2015, 23(6): 1045-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506002.htm CUI Kai, WU Guopeng, WANG Xiuli, et al. Drying-wetting- saturating experiments for deterioration of physical and mechanical properties of slate[J]. Journal of Engineering Geology, 2015, 23(6): 1045-1052. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506002.htm
[9] 刘新荣, 王子娟, 傅晏, 等. 考虑干湿循环作用泥质砂岩的强度与破坏准则研究[J]. 岩土力学, 2017, 38(12): 3395-3401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712001.htm LIU Xinrong, WANG Zijuan, FU Yan, et al. Strength and failure criterion of argillaceous sandstone under dry-wet cycles[J]. Rock and Soil Mechanics, 2017, 38(12): 3395-3401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712001.htm
[10] 刘新荣, 袁文, 傅晏, 等. 干湿循环作用下砂岩溶蚀的孔隙度演化规律[J]. 岩土工程学报, 2018, 40(3): 527-532. doi: 10.11779/CJGE201803017 LIU Xinrong, YUAN Wen, FU Yan, et al. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 527-532. (in Chinese) doi: 10.11779/CJGE201803017
[11] YUAN W, LIU X, FU Y. Chemical thermodynamics and chemical kinetics analysis of sandstone dissolution under the action of dry–wet cycles in acid and alkaline environments[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 793-801.
[12] SUN Q, ZHANG Y. Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone[J]. Engineering Geology, 2019, 248: 70-79.
[13] 刘新喜, 李玉, 王玮玮, 等. 干湿循环作用下预制裂隙炭质页岩力学特性及强度准则研究[J]. 岩石力学与工程学报, 2022, 41(2): 228-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202002.htm LIU Xinxi, LI Yu, WANG Weiwei, et al. Mechanical properties and strength criteria of prefabricated fractured carbonaceous shale under wetting and drying cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2): 228-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202002.htm
-
期刊类型引用(7)
1. 李俊毅. 电渗法加固土体技术的探究与展望. 岩土工程技术. 2024(02): 238-245 . 百度学术
2. 王炳辉,栾佶,张雷,金海晖,张文博. 电渗热固结处理顶管废弃泥浆的减量化研究. 地下空间与工程学报. 2024(02): 507-517 . 百度学术
3. 王华杰. 电渗试验中土体电阻变化规律探究. 科技创新与应用. 2024(34): 73-76 . 百度学术
4. 王炳辉,李贵豪,张雷,金海晖,吴涛,贾仲泽,金丹丹. 不同掺加材料对软土电渗加固效果的影响. 自然灾害学报. 2024(06): 86-97 . 百度学术
5. 桂书润,王龙嘉,班子越,赵飞燕,徐欣. 电渗联合堆载预压及化学法加速淤筑土固结的试验研究. 河南科技. 2023(05): 86-90 . 百度学术
6. 陈海鹏. 引水隧洞混凝土裂缝化学灌浆加固技术研究. 陕西水利. 2023(10): 154-156 . 百度学术
7. 李丽华,杨俊杰,徐维生,宋杨,曹毓. 电渗法联合化学固化法改良淤泥试验. 中国科技论文. 2022(12): 1340-1345 . 百度学术
其他类型引用(3)
-
其他相关附件