• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于雷达遥感对地观测技术的软土地区公路沉降监测方法

邢学敏, 杨东, 张锐, 熊旭平, 朱珺, 黄丽, 张济航

邢学敏, 杨东, 张锐, 熊旭平, 朱珺, 黄丽, 张济航. 基于雷达遥感对地观测技术的软土地区公路沉降监测方法[J]. 岩土工程学报, 2023, 45(10): 2172-2179. DOI: 10.11779/CJGE20220813
引用本文: 邢学敏, 杨东, 张锐, 熊旭平, 朱珺, 黄丽, 张济航. 基于雷达遥感对地观测技术的软土地区公路沉降监测方法[J]. 岩土工程学报, 2023, 45(10): 2172-2179. DOI: 10.11779/CJGE20220813
XING Xuemin, YANG Dong, ZHANG Rui, XIONG Xuping, ZHU Jun, HUANG Li, ZHANG Jihang. Monitoring method for subsidence of highways in soft soil areas based on radar remote sensing earth observation technique[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2172-2179. DOI: 10.11779/CJGE20220813
Citation: XING Xuemin, YANG Dong, ZHANG Rui, XIONG Xuping, ZHU Jun, HUANG Li, ZHANG Jihang. Monitoring method for subsidence of highways in soft soil areas based on radar remote sensing earth observation technique[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2172-2179. DOI: 10.11779/CJGE20220813

基于雷达遥感对地观测技术的软土地区公路沉降监测方法  English Version

基金项目: 

国家自然科学基金项目 42074033

湖南省自然科学基金项目 2022JJ30589

中国水利水电第八工程局有限公司科研项目 2023060

湖南省自然资源科研项目 20230118CH

湖南省交通运输厅科技创新项目 202211

长沙市杰出创新青年培养计划项目 kq2209011

洞庭湖生态环境遥感监测湖南省重点实验室开放课题项目 

详细信息
    作者简介:

    邢学敏(1983—),女,博士,副教授,主要从事时序InSAR技术在地表形变监测中的应用方面的科研工作。E-mail: xuemin.xing@csust.edu.cn

    通讯作者:

    张锐, E-mail: zr@csust.edu.cn

  • 中图分类号: TU447;P237

Monitoring method for subsidence of highways in soft soil areas based on radar remote sensing earth observation technique

  • 摘要: 为克服传统公路沉降监测方法需耗费大量人力物力且监测范围有限的问题,旨在提出一种基于雷达遥感对地观测技术(InSAR)的软土地区公路沉降自动化、大范围监测方法。考虑软土沉降特征,将非线性黏弹塑性四元件组合流变模型引入InSAR形变建模,提出软土地区公路沉降物理模型,并建立InSAR时序相位方程组,估计沉降未知参数,以计算获取公路大范围面状沉降结果。通过模拟数据和广东伦桂路水准实测数据验证了该方法的可行性和可靠性。结果表明:与软土InSAR线性模型计算方法相比,该方法精度提升24%;与传统地面水准实测方法相比,该方法获取的软土地区公路沉降均方根误差为±5.6 mm,相对精度为5%,且趋势与水准实测结果一致。将该方法应用于湖南岳阳湖区公路大范围沉降监测,获取了该区1.5 a的时序沉降结果;该区域公路沉降呈现先快后慢的趋势,累积最大沉降达46 mm,沿湖区沉降明显大于内陆区。可为软土地区公路沉降早期识别和养护管理提供依据。
    Abstract: A large-scale automatic surface monitoring method for highways built in soft soil areas based on the InSAR technique is proposed to overcome the deficiencies of labor-consuming and unavailability of large-scale deformation by the traditional monitoring method for ground subsidence of highways. Considering the deformation characteristics of soft soils, a nonlinear viscoelastic-plastic four-component combined rheological model is introduced into the InSAR deformation modeling. Then the physical soft soil highway subsidence model is proposed and the time-series InSAR functions are established. The parameters for subsidence are estimated to calculate the results of the large-scale surface deformation areas of highways. The simulated and field tests on a segment of Lungui Road in Guangdong Province are carried out. Compared to that of the traditional linear model, the modeling accuracy of the proposed method has an improvement of 24%. The RMSE for Lungui Road is estimated as ±5.6 mm, with a relative accuracy of 5% and a good consistency with its deformation tendency. A case study of a highway near Dongting Lake in Yueyang, Hunan Province is carried out to verify the capacity, and the 1.5-year time-series settlement results are obtained, with the subsidence rate following a fast-to-slow nonlinear capacity. The results show that the subsidence near Dongting Lake is significantly higher than that in the inland area, with the maximum subsidence accumulated to 46 mm. The proposed method may provide a reference for early subsidence detection and maintenance management of soft soil highways.
  • 图  1   时序InSAR沉降监测方法技术流程图

    Figure  1.   Flow chart of time-series InSAR subsidence monitoring method

    图  2   参数估计值偏差与真实值对比(噪声水平为0.5 rad)

    Figure  2.   Comparison between deviation of parameter estimation and the real data (noise level 0.5 rad)

    图  3   伦桂路测区位置

    Figure  3.   Location of Lungui Road

    图  4   伦桂路测区时序沉降

    Figure  4.   Time-series subsidences of Lungui Road (reference date: 1 January—December 2015)

    图  5   与水准点形变结果进行对比

    Figure  5.   Comparison of results by proposed method and levelling measurements on benchmark

    图  6   洞庭湖测区位置

    Figure  6.   Location of Dongting Lake

    图  7   洞庭湖测区时序沉降(起始时间:2011年12月28日)

    Figure  7.   Time-series subsidences in Dongting Lake area (reference date: 28 December 2011)

    图  8   特征点时序沉降结果对比

    Figure  8.   Comparison of subsidence results at feature points

    图  9   模型残余相位对比结果

    Figure  9.   Comparison of results of residual phase of models

  • [1] 张晗, 杨石飞, 王琳, 等. 上海地区软土旁压加卸载变形特性试验研究[J]. 岩土工程学报, 2022, 44(4): 769-777. doi: 10.11779/CJGE202204021

    ZHANG Han, YANG Shifei, WANG Lin, et al. Experimental researches on in situ loading and unloading deformation characteristics of soft soil based on pressuremeter tests in Shanghai area[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 769-777. (in Chinese) doi: 10.11779/CJGE202204021

    [2] 王敏, 李义杰, 徐林荣. 高铁路基动载沉降现场监测分析[J]. 土木建筑与环境工程, 2017, 39(6): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201706003.htm

    WANG Min, LI Yijie, XU Linrong. Field monitoring and analysis of dynamic load settlement of high speed railway subgrade[J]. Journal of Chongqing Jianzhu University, 2017, 39(6): 22-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201706003.htm

    [3] 薛祥, 宋连亮, 贾亮, 等. 高速公路软土路基工后沉降预测的新方法[J]. 岩土工程学报, 2011, 33(增刊1): 132-137. http://www.cgejournal.com/cn/article/id/14239

    XUE Xiang, SONG Lianliang, JIA Liang, et al. New prediction method for post-construction settlement of soft-soil roadbed of expressway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 132-137. (in Chinese) http://www.cgejournal.com/cn/article/id/14239

    [4] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. doi: 10.11947/j.AGCS.2017.20170350

    ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. (in Chinese) doi: 10.11947/j.AGCS.2017.20170350

    [5]

    BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. doi: 10.1109/TGRS.2002.803792

    [6] 何秀凤, 高壮, 肖儒雅, 等. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报, 2021, 50(5): 600-611. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202105005.htm

    HE Xiufeng, GAO Zhuang, XIAO Ruya, et al. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 600-611. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202105005.htm

    [7]

    BAO L, XING X M, CHEN L F, et al. Time series deformation monitoring over large infrastructures around Dongting lake using X-band PSI with a combined thermal expansion and seasonal model[J]. Journal of Sensors, 2021, 21(2): 1-17. doi: 10.1109/JSEN.2020.3042733

    [8]

    XING X M, CHANG H C, CHEN L F, et al. Radar interferometry time series to investigate deformation of soft clay subgrade settlement-a case study of Lungui Highway China[J]. Remote Sensing, 2019, 11(4): 429. doi: 10.3390/rs11040429

    [9] 张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012, 41(6): 864-869, 876. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201206015.htm

    ZHANG Yonghong, WU Hongan, SUN Guangtong. Deformation model of time series interferometric SAR techniques[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 864-869, 876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201206015.htm

    [10] 姜兆英. 短基线集InSAR形变模型的不适定问题解算方法研究[J]. 测绘学报, 2020, 49(3): 399. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202003018.htm

    JIANG Zhaoying. Study on the solving methods of the ill-posed problems of the SBAS InSAR deformation model[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 399. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202003018.htm

    [11]

    ZHAO R, LI Z W, FENG G C, et al. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm with emphasis on climatic factors modeling[J]. Remote Sensing of Environment, 2016, 184: 276-287.

    [12]

    WANG C, ZHANG Z J, ZHANG H, et al. Seasonal deformation features on Qinghai-Tibet railway observed using time-series InSAR technique with high-resolution TerraSAR-X images[J]. Remote Sensing Letters, 2017, 8(1): 1-10. http://www.onacademic.com/detail/journal_1000039574009010_dcd3.html

    [13] 高彦斌, 张松波, 郭永发. 软土地基的变形速率及稳定性控制[J]. 中国公路学报, 2017, 30(2): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201702002.htm

    GAO Yanbin, ZHANG Songbo, GUO Yongfa. Deformation rates and stability control of soft foundation[J]. China Journal of Highway and Transport, 2017, 30(2): 11-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201702002.htm

    [14] 刘新喜, 童庆闯, 侯勇, 等. 高应力泥质粉砂岩非线性蠕变损伤模型研究[J]. 中国公路学报, 2018, 31(2): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802031.htm

    LIU Xinxi, TONG Qingchuang, HOU Yong, et al. Research on nonlinear creep damage model of high stress argillaceous siltstone[J]. China Journal of Highway and Transport, 2018, 31(2): 280-288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802031.htm

    [15] 刘开云, 薛永涛, 周辉. 参数非定常的软岩非线性黏弹塑性蠕变模型[J]. 中国矿业大学学报, 2018, 47(4): 921-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804030.htm

    LIU Kaiyun, XUE Yongtao, ZHOU Hui. A nonlinear viscoelastic-plastic creep model of soft rock with unsteady parameters[J]. Journal of China University of Mining & Technology, 2018, 47(4): 921-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804030.htm

    [16] 赵维炳, 施健勇. 软土固结与流变[M]. 南京: 河海大学出版社, 1996: 12-13.

    ZHAO Weibing, SHI Jianyong. Consolidation and Rheology of Soft Soil[M]. Nanjing: Hohai University Press, 1996: 12-13. (in Chinese)

    [17]

    XING X M, ZHANG T F, CHEN L F, et al. InSAR modeling and deformation prediction for salt solution mining using a novel CT-PIM function[J]. Remote Sensing, 2022, 14(4): 842-865.

    [18]

    HU J Y, MOTAGH M, GUO J M, et al. Inferring subsidence characteristics in Wuhan (China) through multitemporal InSAR and hydrogeological analysis[J]. Engineering Geology, 2022, 297: 106530.

图(9)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 网络出版日期:  2023-03-05
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回