• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究

张冬梅, 周文鼎, 卜祥洪, 姜燕, 贾恺, 杨光华

张冬梅, 周文鼎, 卜祥洪, 姜燕, 贾恺, 杨光华. 盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究[J]. 岩土工程学报, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
引用本文: 张冬梅, 周文鼎, 卜祥洪, 姜燕, 贾恺, 杨光华. 盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究[J]. 岩土工程学报, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
ZHANG Dong-mei, ZHOU Wen-ding, BU Xiang-hong, JIANG Yan, JIA Kai, YANG Guang-hua. Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
Citation: ZHANG Dong-mei, ZHOU Wen-ding, BU Xiang-hong, JIANG Yan, JIA Kai, YANG Guang-hua. Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018

盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究  English Version

详细信息
    作者简介:

    张冬梅(1975—),女,博士,教授,博士生导师,主要从事盾构隧道相关方面的研究。E-mail: dmzhang@tongji.edu.cn

  • 中图分类号: TU43

Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure

  • 摘要: 利用1∶1原型试验对盾构–钢筋钢纤维混凝土双层衬砌在内水压下的受力变形规律及破坏模式展开研究。试验结果表明,盾构管片接头是双层衬砌抗拉薄弱位置,内衬环面临近管片接头处首先产生裂缝然后逐渐接近均匀分布;盾构–钢筋钢纤维混凝土双层衬砌受力破坏过程可以大致分为4个阶段:①线弹性阶段,该阶段衬砌受力变形随内水压的增加线性变化;②内衬开裂阶段,内衬开裂后钢纤维发挥桥接作用,内衬环向抗拉刚度逐渐降低,盾构管片分担的内水压比例逐渐上升,内衬轴力逐渐由钢筋承担;③内衬开裂稳定阶段和接头损伤阶段,该阶段内衬残余刚度趋于稳定,管片分担的内水压比例不再增加,随后部分管片接头对应混凝土出现压损,管片抗拉刚度下降;④衬砌破坏阶段,内衬钢筋逐渐屈服,最终部分盾构管片接头出现严重破坏。原型试验的结果揭示了盾构–钢筋钢纤维混凝土双层衬砌在内水压作用下的破坏过程和机理,可为工程实践提供参考。
    Abstract: Based on the prototype of shield-reinforced steel fiber conducted double-layer linings with the scale of 1∶1, model tests of deformation laws and failure under high internal water pressure are conducted. The test results show that the segmental joints are the tensile weak positions of double-layer linings, and the cracks occur in the inner lining near the joints firstly and then are evenly distributed along the circumferential direction. The failure process of the double-layer linings can be divided into four stages: (1) At the linear elastic stage, the stress and deformation of the linings change linearly with the increase of the internal water pressure. (2) At the cracking stage of the linings, the steel fiber plays a bridging role, the stiffness of the linings gradually decreases, the proportion of internal water pressure shared by the segmental linings gradually increases, and the axial force of the linings is gradually transferred to the reinforcing bars. (3) At the stable stage of cracking of the linings and the damaged stage of the joints, the residual stiffness of the inner linings tends to be stable, and the proportion of the internal water pressure shared by the segmental linings no longer increases, and then the concrete of some segmental joints is damaged, and the tensile stiffness of the segement decreases. (4) At the failure, the stresses of stage of the linings gradually reach the yield value, and eventually the severe damage of segmental joints occurs. The experimental results reveal the failure process of the double-layer linings subjected to internal water pressure, and they can be referred to for the engineering application.
  • 图  1   双层衬砌示意图

    Figure  1.   Specimen of double-layer linings

    图  2   试验测点布置图

    Figure  2.   Arrangement of measuring points for strain

    图  3   试验加载设备

    Figure  3.   Test set-up

    图  4   内衬环面裂缝发展过程

    Figure  4.   Development process of cracks of linings

    图  5   内衬混凝土应变随内水压变化曲线

    Figure  5.   Change of strain of concrete of linings under different internal water pressures

    图  6   内衬钢筋应变随内水压变化曲线

    Figure  6.   Change of strain of reinforcing bars of linings under different internal water pressures

    图  7   盾构管片接头螺栓应变随内水压变化曲线

    Figure  7.   Change of strain of bolts under different internal water pressures

    图  8   盾构管片接缝随内水压变化曲线#

    Figure  8.   Change of opening of joints under different internal water pressures

    图  9   盾构管片接头破损情况

    Figure  9.   Damage of segmental joints

    图  10   双层衬砌收敛变形随内水压变化曲线

    Figure  10.   Change of convergence of linings under different internal water pressures

    表  1   双层衬砌整体刚度变化

    Table  1   Change of stiffness of double-layer linings

    水压/MPa 0~0.44 0.44~0.66 0.66~0.8 0.8~1.0 1.0~1.35 1.35~1.8
    刚度/GN 30.8 14.1 9.4 3.5 3.4 1.7
    下载: 导出CSV

    表  2   围岩类型对双层衬砌内水压承载能力的影响

    Table  2   Influences of type of surrounding rock on bearing capacity of double-linger linings under internal water pressure

    围岩类型 弹性模量/MPa 内水压/MPa
    0 1.00
    黏土 30 1.01
    强风化岩 1000 1.27
    中等风化岩 2000 1.54
    下载: 导出CSV
  • [1] 钮新强, 符志远, 张传健. 穿黄隧洞衬砌1∶1仿真模型试验研究[J]. 人民长江, 2011, 42(8): 77–86. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201108015.htm

    NIU Xin-qiang, FU Zhi-yuan, ZHANG Chuan-jian. Full-scaled simulation model and experiment research on lining of tunnel crossing Yellow River[J]. Yangtze River, 2011, 42(8): 77–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201108015.htm

    [2]

    WANG C Z, LIU X, LIU W, et al. Effects of different interface forms on mechanical properties of steel self-compacting concrete composite beams[J]. Advances in Civil Engineering, 2020(2): 1–17.

    [3] 刘庭金, 陈高敬, 唐欣薇, 等. 高内压作用下叠合式衬砌结构承载机理原型试验研究[J]. 水利学报, 2020, 51(3): 295–304. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202003005.htm

    LIU Ting-jin, CHEN Gao-jing, TANG Xin-wei, et al. The bearing mechanism of superimposed linings structure under high inner hydraulic pressure: a prototype experimental study[J]. Journal of Hydraulic Engineering, 2020, 51(3): 295–304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202003005.htm

    [4]

    YANG F, CAO S R, QIN G. Performance of the prestressed composite lining of a tunnel: case study of the Yellow River crossing tunnel[J]. International Journal of Civil Engineering, 2018, 16(2): 229–241. doi: 10.1007/s40999-016-0124-0

    [5] 杨光华, 贾恺. 岩石围岩盾构钢筋混凝土内衬高内压输水隧洞受力简化分析方法[J]. 长江科学院院报, 2020, 37(5): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202005003.htm

    YANG Guang-hua, JIA Kai. Simplified analysis of forces acting on reinforced concrete lining inHigh pressure water conveyance shield tunnel under Surrounding Rock condition[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(5): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202005003.htm

    [6]

    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246–2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)

    [7]

    NAAMAN A E, NAMUR G G, ALWAN J M, et al. Fiber pullout and bond slip. Ⅰ: analytical study[J]. Journal of Structural Engineering, 1991, 117(9): 2769–2790. doi: 10.1061/(ASCE)0733-9445(1991)117:9(2769)

    [8]

    MAYA L F, RUIZ M F, MUTTONI A, et al. Punching shear strength of steel fibre reinforced concrete slabs[J]. Engineering Structures, 2012, 40: 83–94.

    [9] 何化南, 秦杰, 董伟, 等. 大比尺钢衬钢筋混凝土马蹄形压力管道改性试验研究[J]. 岩土力学, 2010, 31(9): 2786–2792. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201009021.htm

    HE Hua-nan, QIN Jie, DONG Wei, et al. Experimental research on large-scale horseshoe section steel liner modified reinforced concrete penstock[J]. Rock and Soil Mechanics, 2010, 31(9): 2786–2792. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201009021.htm

    [10]

    BOBET A, YU H T. Full stress and displacement fields for steel-lined deep pressure tunnels in transversely anisotropic rock[J]. Tunnelling and Underground Space Technology, 2016, 56: 125–135.

    [11] 杨光华, 李志云, 徐传堡, 等. 盾构隧洞复合衬砌的荷载结构共同作用模型[J]. 水力发电学报, 2018, 37(10): 20–30. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201810003.htm

    YANG Guang-hua, LI Zhi-yun, XU Chuan-bao, et al. Modeling load-structure interaction in shield tunnel composite lining[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 20–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201810003.htm

图(10)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回