• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高应力下大理岩循环扰动变形规律及一种破坏前兆特征

俞缙, 姚玮, 任文斌, 樊志忠, 秦伟

俞缙, 姚玮, 任文斌, 樊志忠, 秦伟. 高应力下大理岩循环扰动变形规律及一种破坏前兆特征[J]. 岩土工程学报, 2022, 44(8): 1521-1527. DOI: 10.11779/CJGE202208017
引用本文: 俞缙, 姚玮, 任文斌, 樊志忠, 秦伟. 高应力下大理岩循环扰动变形规律及一种破坏前兆特征[J]. 岩土工程学报, 2022, 44(8): 1521-1527. DOI: 10.11779/CJGE202208017
YU Jin, YAO Wei, REN Wen-bing, FAN Zhi-zhong, QIN Wei. Deformation laws of cyclic disturbance and a failure precursor feature of marble under high stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1521-1527. DOI: 10.11779/CJGE202208017
Citation: YU Jin, YAO Wei, REN Wen-bing, FAN Zhi-zhong, QIN Wei. Deformation laws of cyclic disturbance and a failure precursor feature of marble under high stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1521-1527. DOI: 10.11779/CJGE202208017

高应力下大理岩循环扰动变形规律及一种破坏前兆特征  English Version

基金项目: 

国家自然科学基金项目 51874144

国家自然科学基金项目 42077254

福建省科技计划引导性项目 2020H0014

详细信息
    作者简介:

    俞缙(1978—),男,江苏苏州人,博士,教授,博士生导师,主要从事岩石力学与地下工程方面的科研工作。E-mail: bugyu0717@163.com

  • 中图分类号: TU435

Deformation laws of cyclic disturbance and a failure precursor feature of marble under high stresses

  • 摘要: 为探究工程岩体循环扰动作用下的变形破坏特性,开展了不同应力水平与幅值的大理岩单轴循环扰动试验。试验结果显示:①应力水平是循环扰动下大理岩破坏的主要因素,幅值是次要因素。应力水平刚达到扩容应力时,即使循环幅值很大,大理岩也不会破坏,当应力水平远高于扩容应力且循环幅值很大时,破坏十分迅速;②相对于不可逆变形,动态刚度更能体现变形曲线“疏—密—疏”的三阶段特征。可采用动态刚度衰减率的正负值作为破坏前兆特征,在变形稳定阶段预判岩石是否会发生破坏;③对于破坏岩样,基于动态刚度表征的损伤变量与不可逆变形总趋势相似。“双高”模式与Ⅰ型曲线一致,其余模式与Ⅱ型曲线一致。
    Abstract: In order to explore its deformation and failure laws under cyclic disturbance, a series of uniaxial tests of marble with different stress levels and cyclic amplitudes are carried out. The research results show that: (1) The stress level is the decisive factor whether the marble specimens tend to failure or not, and the cyclic amplitude is a relatively minor factor. When the stress level just reaches the dilation one, the rock specimen can not fail even if it is under a much larger cyclic amplitude. When the stress level is much higher than the dilation stress and the cyclic amplitude is given a much larger value, the rock will rapidly fail. (2) Compared with the irreversible deformation, the dynamic stiffness can better reflect the transition features of sparse-dense-sparse stages. The positive and negative values of decay rate of the dynamic stiffness can be used as the features of failure precursor, and the rock failure can be predicted at the stable deformation stage. (3) For the failed marble specimens, the damage variable based on the dynamic stiffness characterization is similar to the general trend of irreversible deformation. The double-high mode is consistent with the type Ⅰ curve, and the rest of the curves are consistent with the type Ⅱ curve.
  • 图  1   TFD–2000/D型电液伺服三轴动态扰动试验机

    Figure  1.   TFD-2000/D servo-controlled triaxial rock mechanics testing system

    图  2   大理岩试样

    Figure  2.   Marble specimens

    图  3   单轴压缩应力–应变曲线

    Figure  3.   Stress-strain curves of uniaxial compression

    图  4   全过程加载路径

    Figure  4.   Load paths throughout process

    图  5   大理岩循环扰动应力–应变曲线

    Figure  5.   Disturbed stress-strain curves of marble under cyclic disturbance

    图  6   大理岩应变–时间曲线

    Figure  6.   Strain-time curves of marble

    图  7   循环扰动下岩石总变形趋势

    Figure  7.   Total deformation trend of marble under cyclic disturbance

    图  8   不可逆应变–相对循环次数关系

    Figure  8.   Relationship between irreversible strain and relative cycle times

    图  9   动态刚度示意图

    Figure  9.   Schematic diagram of average stiffness

    图  10   动态刚度–相对循环次数关系

    Figure  10.   Relationship between average dynamic axial stiffness and relative number of cycles

    图  11   稳定阶段动态刚度衰减率

    Figure  11.   Decay rate of average dynamic axial stiffness at cyclic stability stage

    图  12   损伤变量与相对循环次数关系

    Figure  12.   Relationship between damage variable and relative cycle number

    表  1   单轴下应力上限与循环幅值的预设目标值)

    Table  1   Preset target values of upper limit of uniaxial stress and disturbance amplitude  (MPa)

    循环幅值 峰值
    应力
    应力
    比70%
    应力
    比80%
    应力
    比90%
    5,10,15 50.00 35.00 40.00 45.00
    下载: 导出CSV

    表  2   岩样破坏情况及循环次数

    Table  2   Failure situations of marble specimens and cycle times

    应力比/% 幅值/MPa
    5 10 15
    70 未破坏 未破坏 未破坏
    80 5500圈 550圈 285圈
    90 5450圈 430圈 24圈
    下载: 导出CSV
  • [1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283–1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    XIE He-ping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    [2] 蔡燕燕, 唐欣, 林立华, 等. 疲劳荷载下大理岩累积损伤过程的应变速率响应[J]. 岩土工程学报, 2020, 42(5): 827–836. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18194.shtml

    CAI Yan-yan, TANG Xin, LIN Li-hua, et al. Strain rate response of damage accumulation of marble under fatigue loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 827–836. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18194.shtml

    [3]

    BAGDE M N, PETROŠ V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 200–209. doi: 10.1016/j.ijrmms.2008.05.002

    [4]

    LIU E L, HUANG R Q, HE S M. Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions[J]. Rock Mechanics and Rock Engineering, 2012, 45(1): 89–102. doi: 10.1007/s00603-011-0185-y

    [5] 刘忠玉, 董旭, 张旭阳. 分级循环荷载下层理煤岩力学特性试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2593–2602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1001.htm

    LIU Zhong-yu, DONG Xu, ZHANG Xu-yang. Experimental study on mechanical properties of bedding coal and rock under graded cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2593–2602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1001.htm

    [6] 夏才初, 周舒威, 胡永生, 等. 循环单轴应力和循环温度作用下玄武岩力学性质初探[J]. 岩土工程学报, 2015, 37(6): 1016–1024. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16160.shtml

    XIA Cai-chu, ZHOU Shu-wei, HU Yong-sheng, et al. Preliminary study on mechanical property of basalt subjected to cyclic uniaxial stress and cyclic temperature[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1016–1024. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16160.shtml

    [7] 祝艳波, 黄兴, 郭杰, 等. 循环荷载作用下石膏质岩的疲劳特性试验研究[J]. 岩石力学与工程学报, 2017, 36(4): 940–952. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704018.htm

    ZHU Yan-bo, HUANG Xing, GUO Jie, et al. Experimental study of fatigue characteristics of gypsum rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 940–952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704018.htm

    [8] 章清叙, 葛修润, 黄铭, 等. 周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J]. 岩石力学与工程学报, 2006, 25(3): 473–478. doi: 10.3321/j.issn:1000-6915.2006.03.006

    ZHANG Qing-xu, GE Xiu-run, HUANG Ming, et al. Testing study on fatigue deformation law of red-sandstone under triaxial compression with cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 473–478. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.006

    [9] 张晖辉, 颜玉定, 余怀忠, 等. 循环载荷下大试件岩石破坏声发射实验: 岩石破坏前兆的研究[J]. 岩石力学与工程学报, 2004, 23(21): 3621–3628. doi: 10.3321/j.issn:1000-6915.2004.21.011

    ZHANG Hui-hui, YAN Yu-ding, YU Huai-zhong, et al. Acoustic emission experimental research on large-scaled rock failure under cycling load—fracture precursor of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3621–3628. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.21.011

    [10]

    PEI F, JI H G, ZHAO J W, et al. Energy evolution and AE failure precursory characteristics of rocks with different rockburst proneness[J]. Advances in Civil Engineering, 2020: 8877901.

    [11]

    LI D X, WANG E Y, KONG X G, et al. Damage precursor of construction rocks under uniaxial cyclic loading tests analyzed by acoustic emission[J]. Construction and Building Materials, 2019, 206: 169–178. doi: 10.1016/j.conbuildmat.2019.02.074

    [12]

    SHEININ V I, BLOKHIN D I, MAKSIMOVICH I B, et al. Experimental research into thermomechanical effects at linear and nonlinear deformation stages in rock salt specimens under cyclic loading[J]. Journal of Mining Science, 2016, 52(6): 1039–1046. doi: 10.1134/S1062739116061575

    [13]

    CAO K W, MA L Q, WU Y, et al. Cyclic fatigue characteristics of rock failure using infrared radiation as precursor to violent failure: experimental insights from loading and unloading response[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(2): 584–594.

    [14] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846–866. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103012.htm

    LI Xi-bing, GONG Feng-qiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846–866. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103012.htm

    [15] 李夕兵, 左宇军, 马春德. 动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J]. 岩石力学与工程学报, 2005, 24(16): 2814–2824. doi: 10.3321/j.issn:1000-6915.2005.16.002

    LI Xi-bing, ZUO Yu-jun, MA Chun-de. Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2814–2824. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.16.002

    [16] 左宇军, 李夕兵, 马春德, 等. 动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J]. 岩石力学与工程学报, 2005, 24(5): 741–746. doi: 10.3321/j.issn:1000-6915.2005.05.002

    ZUO Yu-jun, LI Xi-bing, MA Chun-de, et al. Catastrophic model and testing study on failure of static loading rock system under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 741–746. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.05.002

    [17] 唐礼忠, 武建力, 刘涛, 等. 大理岩在高应力状态下受小幅循环动力扰动的力学试验[J]. 中南大学学报(自然科学版), 2014, 45(12): 4300–4307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201412028.htm

    TANG Li-zhong, WU Jian-li, LIU Tao, et al. Mechanical experiments of marble under high stress and cyclic dynamic disturbance of small amplitude[J]. Journal of Central South University (Science and Technology), 2014, 45(12): 4300–4307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201412028.htm

    [18] 刘涛, 杨鹏, 吕文生, 等. 岩石在不同应力幅值下受低频循环扰动的力学特性试验[J]. 煤炭学报, 2017, 42(9): 2280–2286. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709010.htm

    LIU Tao, YANG Peng, LÜ Wen-sheng et al. Rock mechanical properties experiments with low-frequency circulation disturbance under different stress amplitudes[J]. Journal of China Coal Society, 2017, 42(9): 2280–2286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709010.htm

    [19]

    LIU E L, HE S M. Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions[J]. Engineering Geology, 2012, 125: 81–91. doi: 10.1016/j.enggeo.2011.11.007

  • 期刊类型引用(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 . 百度学术
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 . 百度学术
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 . 百度学术

    其他类型引用(15)

图(12)  /  表(2)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  33
  • PDF下载量:  108
  • 被引次数: 19
出版历程
  • 收稿日期:  2021-06-30
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回