Gas transport in coal seams based on non-equilibrium state
-
摘要: 煤层气开采过程中,由于裂隙与基质渗透率性能差异性较大,导致储层在长时间内都将处于非平衡的动态调整阶段。然而,目前大多数的试验和渗透率模型只考虑某一固定气体压力的影响,这极大地限制了对非平衡状态下储层气体流动的研究。为此,基于储层为双重孔隙介质的概念,考虑开采过程中基质–裂隙不同的孔隙压力、解吸变形和力学作用对裂隙开度演化的影响,提出了一种预测气体在非平衡状态下的渗透率模型,并用现场数据进行了验证。进一步将渗透率模型代入气体流动方程,采用有限元软件分析了岩芯内基质–裂隙的孔隙压力和渗透率随时空的演变规律。研究结果表明:在岩芯解吸过程中,①岩芯内裂隙气体压力受扰动范围大于基质气体压力;②基质–裂隙气体压力和渗透率沿岩芯长度呈现非线性分布;③基质–裂隙渗透率变化趋势相同。Abstract: During extraction of coalbed methane, the reservoir will be in a non-equilibrium dynamic adjustment phase for a long period of time due to the high variability of fracture and matrix permeability properties. However, most of the current tests and permeability models only consider the effects of a certain fixed gas pressure, which greatly limits the study of reservoir gas flow under non-equilibrium condition. Therefore, based on the concept that the reservoir is a dual porous medium, and considering the effects of different pore pressures, desorption deformation and mechanical effects of matrix-fracture on the evolution of fracture aperture during the extraction process, a model is proposed to predict the reservoir permeability under variable stress states and validated through the field data. Then the model is substituted into the gas flow equation, and the pore pressure of matrix–fracture and the evolution of core permeability in time and space are studied separately by using the finite element software. The results show that during the core desorption: (1) The fracture gas pressure in the core is disturbed to a greater extent than the matrix gas pressure. (2) The gas pressure and permeability of matrix–fracture exhibit non-linear distribution along the core length. (3) The permeability of matrix–fracture varies in the same trend.
-
-
表 1 拟合圣胡安盆地煤层所用的参数
Table 1 Parameters used to fit coal seams in San Juan Basin
表 2 圣胡安盆地Fruitland煤层测量的现场数据[23]
Table 2 Field data measured in Fruitland coal seam in San Juan Basin [23]
井号 k0/(10-15·m2) 储层压力/MPa 渗透率/(10-15·m2) 测点1 测点2 测点3 测点1 测点2 测点3 井1 1.8 4.85 3.12 2.43 7.2 16.5 20.6 井2 6.2 4.61 3.52 3.04 1.7 2.7 2.9 井3 5.3 4.52 3.03 2.07 4.0 18.5 28.3 井4 2.1 3.38 2.88 2.21 9.3 9.6 16.2 井5 9.1 3.20 2.48 2.05 10.6 14.5 23.5 井6 2.1 2.98 2.11 1.96 11.5 24.3 28.8 表 3 输入数值模型的参数值
Table 3 Input parameters in numerical model
符号 取值和来源 物理意义 单位 E 2902[20] 煤的弹性模量 MPa Em 8143[24] 基质的弹性模量 MPa ν 0.35[20] 泊松比 — ρs 1250[15] 煤的密度 kg/m3 φf0 2[15] 初始裂隙孔隙度 % φm0 2[15] 初始裂隙孔隙度 % kf0 1×10-17 初始裂隙渗透率 m2 km0 1×10-19 初始基质渗透率 m2 b 0.01[24] 裂隙开度 m s 1×10-5[24] 基质宽度 m μ 1.84×10-5[15] 气体黏度 Pa·s pL 4.3[20] Langmuir压力常数 MPa α 2/3[15] 基质的Biot系数 — εL 0.01266[20] Langmuir体积应变常数 — p0 0.103 标准大气压 MPa -
[1] 刘文华. 能源总量供需平稳能源结构继续优化[N]. 中国信息报, 2020-1-20. LIU Wen-hua. Total energy supply and demand will remain stable and the energy mix will continue to improve[N]. China Information News, 2020-1-20. (in Chinese)
[2] JIANG C Z, ZHAO Z F, ZHANG X W, et al. Controlling effects of differential swelling index on evolution of coal permeability[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 461–472. doi: 10.1016/j.jrmge.2020.02.001
[3] 肖智勇, 王长盛, 王刚, 等. 基质–裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml
[4] LIU J S, CHEN Z W, ELSWORTH D, et al. Interactions of multiple processes during CBM extraction: a critical review[J]. International Journal of Coal Geology, 2011, 87(3/4): 175–189.
[5] WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668–678. doi: 10.1016/j.ijggc.2010.02.004
[6] LIU H H, RUTQVIST J. A new coal-permeability model: internal swelling stress and fracture–matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157–171. doi: 10.1007/s11242-009-9442-x
[7] 李小春, 付旭, 方志明, 等. 有效应力对煤吸附特性影响的试验研究[J]. 岩土力学, 2013, 34(5): 1247–1252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305003.htm LI Xiao-chun, FU Xu, FANG Zhi-ming, et al. Experimental study of influence of effective stress on coal adsorption performance[J]. Rock and Soil Mechanics, 2013, 34(5): 1247–1252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305003.htm
[8] ZHOU Y B, LI Z H, YANG Y L, et al. Evolution of coal permeability with cleat deformation and variable klinkenberg effect[J]. Transport in Porous Media, 2016, 115(1): 153–167. doi: 10.1007/s11242-016-0759-y
[9] LIU T, LIN B Q, YANG W. Impact of matrix-fracture interactions on coal permeability: model development and analysis[J]. Fuel, 2017, 207: 522–532. doi: 10.1016/j.fuel.2017.06.125
[10] WANG L S, CHEN Z W, WANG C G, et al. Reassessment of coal permeability evolution using steady-state flow methods: the role of flow regime transition[J]. International Journal of Coal Geology, 2019, 211: 103210. doi: 10.1016/j.coal.2019.103210
[11] ZHI S, ELSWORTH D. The role of gas desorption on gas outbursts in underground mining of coal[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(3): 151–171. doi: 10.1007/s40948-016-0026-2
[12] ZHANG H B, LIU J S, ELSWORTH D. How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1226–1236. doi: 10.1016/j.ijrmms.2007.11.007
[13] SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1–16. doi: 10.1023/B:TIPM.0000018398.19928.5a
[14] LIU Q Q, CHENG Y P, ZHOU H X, et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and klinkenberg effects[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1163–1180. doi: 10.1007/s00603-014-0594-9
[15] PENG Y, LIU J S, WEI M Y, et al. Why coal permeability changes under free swellings: new insights[J]. International Journal of Coal Geology, 2014, 133: 35–46. doi: 10.1016/j.coal.2014.08.011
[16] 张宏学. 页岩储层渗流–应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015. ZHANG Hong-xue. Seepage and Stress Coupling Model for Shale Reservoir and Its Application[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
[17] GRAY I. Reservoir engineering in coal seams: part 1—the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(1): 28–34. doi: 10.2118/12514-PA
[18] PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539–544.
[19] CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
[20] SHI J Q, DURUCAN S. Exponential growth in San Juan Basin fruitland coalbed permeability with reservoir drawdown: model match and new insights[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(6): 914–925.
[21] WU Y, LIU J S, ELSWORTH D, et al. Evolution of coal permeability: contribution of heterogeneous swelling processes[J]. International Journal of Coal Geology, 2011, 88(2/3): 152-162.
[22] ROBERTSON E P. Modeling permeability in coal using sorption-induced strain data[C]// SPE Annual Tethnical Conference and Exhibition. Dallas, 2005.
[23] PALMER I. Permeability changes in coal: analytical modeling[J]. International Journal of Coal Geology, 2009, 77(1/2): 119–126.
[24] WU Y, LIU J S, ELSWORTH D, et al. Development of anisotropic permeability during coalbed methane production[J]. Journal of Natural Gas Science and Engineering, 2010, 2(4): 197–210. doi: 10.1016/j.jngse.2010.06.002
-
期刊类型引用(37)
1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 . 百度学术
2. 程瑞林,汪泾周,范钦煜,湛正刚,周伟,马刚. 高心墙堆石坝材料本构模型计算的适用性研究. 中南大学学报(自然科学版). 2024(01): 219-229 . 百度学术
3. 张丹,邱子源,金伟,张梓航,罗玉龙. 粗粒土渗透及渗透变形试验缩尺方法研究. 岩土力学. 2024(01): 164-172 . 百度学术
4. 崔熙灿,张凌凯,王建祥. 缩尺效应对砂砾石料力学特性及其本构模型的影响. 浙江大学学报(工学版). 2024(06): 1198-1208 . 百度学术
5. 邹德高,宁凡伟,刘京茂,崔更尧,孔宪京. 基于超大型三轴仪的堆石料动力特性缩尺效应研究. 水利学报. 2024(05): 528-536 . 百度学术
6. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
7. 刘赛朝,瞿常杰,石北啸. 堆石料缩尺效应试验及其数值模拟. 江西水利科技. 2024(05): 332-336 . 百度学术
8. 邹德高,刘京茂,宁凡伟,孔宪京,崔更尧,金伟,湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正. 岩土工程学报. 2024(12): 2476-2483 . 本站查看
9. 陈洪春,王珊,段玉昌,王柳江,梁睿斌,徐祥,沈超敏. 基于现场载荷试验的压实土石填筑料变形参数反演. 三峡大学学报(自然科学版). 2023(01): 22-27 . 百度学术
10. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 . 百度学术
11. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
12. 孙向军,潘家军,卢一为,左永振,周跃峰,王俊鹏. 级配和密度组合对粗粒土强度特性的影响. 长江科学院院报. 2023(08): 133-138 . 百度学术
13. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 . 百度学术
14. 潘家军,孙向军. 粗颗粒土缩尺方法及缩尺效应研究进展. 长江科学院院报. 2023(11): 1-8 . 百度学术
15. 吴鑫磊,石北啸,刘赛朝,徐卫卫,常伟坤. 考虑颗粒破碎的堆石料大型三轴试验. 科学技术与工程. 2022(02): 749-756 . 百度学术
16. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 . 百度学术
17. 吴平,万燎榕,夏万求,高从容. 考虑级配影响的粗粒料三轴剪切破碎特性分析. 水电能源科学. 2022(05): 156-159+155 . 百度学术
18. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 . 百度学术
19. 邹德高,刘京茂,孔宪京,陈楷,屈永倩,宁凡伟,龚瑾. 强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则. 岩土工程学报. 2022(07): 1329-1340 . 本站查看
20. 徐靖,叶华洋,朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用. 河海大学学报(自然科学版). 2022(04): 127-134 . 百度学术
21. 汤洪洁,杨正权,赵宇飞,田忠勇. 阿尔塔什高面板坝变形控制与安全保障关键技术研究. 水利规划与设计. 2022(12): 26-32 . 百度学术
22. 宁凡伟,孔宪京,邹德高,刘京茂,余翔,周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响. 岩土工程学报. 2021(02): 263-270 . 本站查看
23. 刘赛朝,吴鑫磊,徐卫卫,石北啸. 堆石料缩尺效应试验研究. 人民长江. 2021(01): 173-176+217 . 百度学术
24. 姜景山,左永振,程展林,韦有信,张超,夏威夷. 考虑密度影响的粗粒料剪胀模型. 人民长江. 2021(04): 182-186 . 百度学术
25. 潘生贵,陈少峰,杨辉,郑有强,李传懿. 海岸带强风化花岗岩强度及应力应变特性的尺寸效应研究. 工程勘察. 2021(05): 6-10 . 百度学术
26. 毛航宇,刘斯宏,沈超敏,王柳江,初文婷. 温、湿控制粗粒料大型三轴仪的研制及应用. 岩石力学与工程学报. 2021(06): 1258-1266 . 百度学术
27. 周泳峰,王俊杰,王爱国,杨希. 缩尺效应对堆石料颗粒破碎特性的影响. 水电能源科学. 2021(08): 165-168+65 . 百度学术
28. 王家全,畅振超,王晴,唐毅. 不同动应力比下加筋前后砾性土的动三轴试验分析. 水力发电. 2020(04): 120-125 . 百度学术
29. 李传懿,陈志波. 海底强风化花岗岩K_0固结三轴试验尺寸效应. 中南大学学报(自然科学版). 2020(06): 1646-1653 . 百度学术
30. 邵晓泉,迟世春. 堆石料变形参数的粒径尺寸相关性研究. 岩土工程学报. 2020(09): 1715-1722 . 本站查看
31. 李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 . 百度学术
32. 吴鑫磊,徐卫卫,刘赛朝,常伟坤,石北啸. 粗粒料缩尺效应的试验研究进展. 水利科学与寒区工程. 2020(03): 1-7 . 百度学术
33. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
34. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
35. 郭万里,朱俊高,王俊杰,鲁洋. 粗粒土静力特性及室内测试技术研究进展. 岩石力学与工程学报. 2020(S2): 3570-3585 . 百度学术
36. 武利强,叶飞,林万青. 堆石料力学特性缩尺效应试验研究. 岩土工程学报. 2020(S2): 141-145 . 本站查看
37. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 . 百度学术
其他类型引用(25)