• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

酸雨入渗膨胀土的水土化学试验与作用机理分析

常锦, 杨和平, 肖杰, 徐永福

常锦, 杨和平, 肖杰, 徐永福. 酸雨入渗膨胀土的水土化学试验与作用机理分析[J]. 岩土工程学报, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013
引用本文: 常锦, 杨和平, 肖杰, 徐永福. 酸雨入渗膨胀土的水土化学试验与作用机理分析[J]. 岩土工程学报, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013
CHANG Jin, YANG He-ping, XIAO Jie, XU Yong-fu. Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013
Citation: CHANG Jin, YANG He-ping, XIAO Jie, XU Yong-fu. Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013

酸雨入渗膨胀土的水土化学试验与作用机理分析  English Version

基金项目: 

国家重点研发计划项目 2019YFC1509800

国家自然科学基金项目 42107166

湖南省自然科学基金项目 2021JJ40632

详细信息
    作者简介:

    常锦(1990—),男,博士后,讲师,主要从事特殊土路基设计与处治、环境土力学等方面的教学和科研工作。E-mail: changjin1906@126.com

    通讯作者:

    徐永福, E-mail: yongfuxu@sjtu.edu.cn

  • 中图分类号: TU443

Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil

  • 摘要: 弄清酸雨入渗膨胀土所产生的水土化学作用,对获取酸雨区浅表层膨胀土基本性能劣化机理及分析边坡的稳定性非常重要。为此,取广西酸雨重灾区的百色原状膨胀土,研制循环饱水试验装置并模拟不同pH值的雨水入渗环境,开展酸雨入渗膨胀土水土化学试验;运用多种微观测试技术,探究膨胀土的矿物与化学成分演变规律;采用地球化学模拟软件(PHREEQC)及水土化学理论,分析膨胀土与酸雨间水土化学作用机理。结果表明:相比静态水饱和状态,降雨入渗动态水饱和环境能促进膨胀土中矿物质的溶蚀与淋滤,加速土体结构的破坏;酸雨入渗后膨胀土中CaO、Fe2O3、K2O明显大于SiO2、Al2O3等氧化物的溶蚀与淋滤量;雨水的pH值越小,膨胀土片状微结构间溶蚀的方解石及游离氧化物等胶结物越多,离子交换作用增强;酸雨与土中矿物的相互作用加剧,部分伊利石脱钾转变为蒙脱石黏土矿物,导致伊利石含量减小,蒙脱石含量增加,土的亲水性增强而结构不稳定性变大,不利于膨胀土边坡的稳定。
    Abstract: It is very important to clarify the mechanism of soil-water chemical interaction between acid rain and expansive soil for studying the deterioration mechanism of performance of shallow expansive soil and slope stability in acid rain areas. Therefore, the undisturbed expansive soil in the acid rain-affected areas in Baise City, Guangxi Zhuang Autonomous Region is studied. A cyclic water saturated test device is designed to simulate the rainwater infiltration environment with different pH values to carry out soil-water chemical tests. A variety of micro-test techniques are used to explore the evolution law of minerals and chemical components in the expansive soil. The mechanism of soil-water chemical interaction between expansive soil and acid rain is analyzed by using PHREEQC simulation software and soil-water chemical theory. The results show that compared with the static water saturated environment, the dynamic water saturated environment of rainfall infiltration promotes the dissolution and leaching of minerals in the expansive soil, and accelerates the destruction of soil structure. The dissolution and leaching amount of CaO, Fe2O3, K2O in the expansive soil under acid rain infiltration is significantly greater than that of SiO2, Al2O3. The lower the pH value of rainwater, the more the cements such as calcite and free oxides leached between the sheet microstructures of the expansive soil, and the ion-exchange will be enhanced. The interaction between acid rain and minerals in soil is intensified, and part of illite is converted into montmorillonite clay minerals, resulting in the decrease of illite content, the increase of montmorillonite content, the enhancement of soil hydrophilicity and the increase of structural instability, which is not conducive to the stability of expansive soil slopes.
  • 图  1   室内循环饱水试验装置

    Figure  1.   Indoor circulating water filling test device

    图  2   SR400便携箱式蠕动泵装置

    Figure  2.   SR400 Portable box type peristaltic pump device

    图  3   循环饱水试验试样

    Figure  3.   Cyclic saturated test sample

    图  4   循环饱水试验溶液中沉淀质量

    Figure  4.   Mass of sediments in solution of cyclic water saturated tests

    图  5   循环饱水试验中参与反应的主要矿物质量

    Figure  5.   Mass of main minerals involved in reaction in cyclic water saturated tests

    图  6   试样主要化合物成分及质量分数

    Figure  6.   Composition and mass fraction of main compounds in samples

    图  7   沉淀物主要化合物成分及质量分数

    Figure  7.   Composition and mass fraction of main compounds in sediments

    图  8   溶液中沉淀物主要化学成分质量

    Figure  8.   Mass of main chemical components of sediments in solution

    图  9   参与反应的主要化学成分质量

    Figure  9.   Mass of main chemical components involved in reaction

    图  10   循环饱水试验中主要阳离子成分及其质量浓度

    Figure  10.   Main cation components and its mass concentration in cyclic water saturated tests

    图  11   碳酸盐填充于土粒孔隙

    Figure  11.   Carbonate filled in pore of soil particles

    图  12   不同pH值(pH=3, 5, 7)降雨环境下膨胀土的微观结构图

    Figure  12.   Microstructure of soil samples under rainwater environment with pH = 3, 5, 7

    表  1   膨胀土的基本性质参数

    Table  1   Characteristic indices of expansive soil

    相对质量密度Gs 天然含水率/% 天然密度/(g∙cm-³) 液限wL/% 塑限wp/% 塑性指数IP 颗粒质量分数/% 蒙脱石
    质量分数/%
    比表
    面积/(m2∙g-1)
    自由膨胀率δef/% 伊/蒙混层比/%
    > 0.07 mm 0.005~0.075 mm < 0.005 mm
    2.70 20.6 2.09 56.3 21.4 34.9 0.10 52.02 47.88 16.58 130.77 82.00 45.00
    下载: 导出CSV

    表  2   循环饱水试验中试样及沉淀物的质量

    Table  2   Mass of samples and sediments in cyclic water saturation tests

    试验条件 试验前试样质量/g 试验后试样质量/g 溶液中沉淀质量/g 参与反应质量/g
    pH=7(静态水) 103.214 97.170 3.291 2.753
    pH=7 101.368 85.272 9.124 6.972
    pH=5 104.782 84.782 11.331 8.135
    pH=3 102.312 74.014 16.215 12.083
    下载: 导出CSV

    表  3   循环饱水试验中试样主要矿物成分及质量分数

    Table  3   Composition and mass fraction of main minerals of samples in cyclic water saturation tests  (%)

    主要矿物成分 原状样 pH=7(静态水) pH=7 pH=5 pH=3
    石英 19.02 19.21 19.17 19.21 19.75
    方解石 22.53 20.78 18.02 15.54 10.01
    伊利石 20.42 20.63 20.49 19.99 17.95
    蒙脱石 18.81 19.01 19.48 20.52 22.25
    高岭石 17.22 17.39 17.54 17.31 17.44
    下载: 导出CSV

    表  4   循环饱水试验中沉淀物主要矿物成分及质量分数

    Table  4   Composition and mass fraction of main minerals of sediment in cyclic saturation tests  (%)

    主要矿物成分 原状样 pH=7(静态水) pH=7 pH=5 pH=3
    石英 19.02 20.48 21.91 22.13
    方解石 22.53 15.08 11.87 8.01
    伊利石 20.42 22.31 21.73 21.24
    蒙脱石 18.81 20.56 20.77 21.52
    高岭石 17.22 18.93 19.17 19.01
    下载: 导出CSV

    表  5   循环饱水试验中主要矿物的质量

    Table  5   Mass of main minerals in cyclic saturation tests

    试验条件 实测参数 矿物质量/g
    石英 方解石 伊利石 蒙脱石 高岭石
    pH=7(静态水) 试验前试样质量 20.072 23.776 21.550 19.851 18.173
    试验后试样质量 19.739 21.352 21.198 19.533 17.869
    溶液中沉淀质量
    参与反应的矿物质量
    pH=7 试验前试样质量 19.740 23.383 21.193 19.522 17.872
    试验后试样质量 18.163 17.073 19.413 18.456 16.614
    溶液中沉淀质量 1.216 0.659 1.206 1.152 1.064
    参与反应的矿物质量 0.208 5.651 0.574 -0.086 0.194
    pH=5 试验前试样质量 20.228 23.961 21.717 20.005 18.314
    试验后试样质量 18.279 14.787 19.021 19.526 16.471
    溶液中沉淀质量 1.741 0.630 1.671 1.693 1.495
    参与反应的矿物质量 0.310 8.544 1.025 -1.214 0.347
    pH=3 试验前试样质量 20.095 23.804 21.575 19.874 18.194
    试验后试样质量 17.669 8.955 16.059 20.128 15.777
    溶液中沉淀质量 2.117 0.358 1.776 2.067 1.764
    参与反应的矿物质量 0.362 14.490 3.740 -2.322 0.653
    注:正值为反应物,负值为生成物。
    下载: 导出CSV

    表  6   参与化学作用各反应相的反应量模拟结果

    Table  6   Simulated results of reaction amount of each reaction phase involved in chemical reaction  (mol)

    反应相 pH=7 pH=5 pH=3
    蒙脱石 -8.873×10-6 -1.050×10-5 -2.207×10-5
    方解石 1.287×10-4 2.453×10-4 8.799×10-4
    伊利石 -4.987×10-5 -5.132×10-5 -6.845×10-5
    高岭石 -7.886×10-5 -3.229×10-5 -3.158×10-5
    石英 1.550×10-5 2.137×10-6 5.983×10-6
    下载: 导出CSV
  • [1] 郑丽英, 陈志安, 张丽, 等. 2006—2017年成都地区酸雨变化特征及趋势分析[J]. 气象科技, 2020, 48(3): 380–386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003012.htm

    ZHENG Li-ying, CHEN Zhi-an, ZHANG Li, et al. Characteristics and variation trends of acid rain in Chengdu during 2006—2017[J]. Meteorological Science and Technology, 2020, 48(3): 380–386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003012.htm

    [2] 周晓得, 徐志方, 刘文景, 等. 中国西南酸雨区降水化学特征研究进展[J]. 环境科学, 2017, 38(10): 4438–4446. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201710053.htm

    ZHOU Xiao-de, XU Zhi-fang, LIU Wen-jing, et al. Progress in the studies of precipitation chemistry in acid rain areas of southwest China[J]. Environmental Science, 2017, 38(10): 4438–4446. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201710053.htm

    [3] 孙平安, 李秀存, 于奭, 等. 酸雨溶蚀碳酸盐岩的源汇效应分析——以广西典型岩溶区为例[J]. 中国岩溶, 2017, 36(1): 101–108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201701013.htm

    SUN Ping-an, LI Xiu-cun, YU Shi, et al. Study on source-sink effect in the process of carbonate rock dissolved by acid rain: An example of typical karst regions in Guangxi [J]. Carsologica Sinica, 2017, 36(1): 101–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201701013.htm

    [4] 王苗, 刘敏, 王凯, 等. 2007—2014年湖北省酸雨变化时空特征分析[J]. 气象, 2016, 42(7): 857–864. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201607009.htm

    WANG Miao, LIU Min, WANG Kai, et al. Analysis of variation of acid rain in Hubei during 2007—2014[J]. Meteorological Monthly, 2016, 42(7): 857–864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201607009.htm

    [5] 石春娥, 邓学良, 杨元建, 等. 1992—2013年安徽省酸雨变化特征及成因分析[J]. 南京大学学报(自然科学), 2015, 51(3): 508–516. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503007.htm

    SHI Chun-e, DENG Xue-liang, YANG Yuan-jian, et al. The trend of precipitation acidity in Anhui Province from 1992 to 2013 and its possible reasons[J]. Journal of Nanjing University (Natural Sciences), 2015, 51(3): 508–516. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503007.htm

    [6]

    BASU A, RAM B K, NANDA N K, et al. Deterioration of shear strength parameters of limestone joints under simulated acid rain condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135: 104508. doi: 10.1016/j.ijrmms.2020.104508

    [7]

    LI S G, HUO R K, YOSHIAKI F, et al. Effect of acid-temperature-pressure on the damage characteristics of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104079. doi: 10.1016/j.ijrmms.2019.104079

    [8]

    ZHAO J X, LU C H, DENG L M, et al. Impacts of simulated acid solution on the disintegration and cation release of purple rock (mudstone) in Southwest China[J]. Geomorphology, 2018, 316: 35–43. doi: 10.1016/j.geomorph.2018.05.009

    [9]

    QU D X, LI D K, LI X P, et al. Damage evolution mechanism and constitutive model of freeze- thaw yellow sandstone in acidic environment[J]. Cold Regions Science and Technology, 2018, 155: 174–183. doi: 10.1016/j.coldregions.2018.07.012

    [10] 俞缙, 张欣, 蔡燕燕, 等. 水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J]. 岩土力学, 2019, 40(2): 455–464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902006.htm

    YU Jin, ZHANG Xin, CAI Yan-yan, et al. Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(2): 455–464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902006.htm

    [11] 张先伟, 孔令伟, 陈成, 等. 水化学环境对湛江组黏土结构强度的影响研究[J]. 岩土工程学报, 2017, 39(11): 1967–1975. doi: 10.11779/CJGE201711003

    ZHANG Xian-wei, KONG Ling-wei, CHEN Cheng, et al. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1967–1975. (in Chinese) doi: 10.11779/CJGE201711003

    [12]

    BAKHSHIPOUR Z, ASADI A, HUAT B B K, et al. Long-term intruding effects of acid rain on engineering properties of primary and secondary kaolinite clays[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(3): 1–17.

    [13] 汤文, 姚志宾, 李邵军, 等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学, 2016, 37(10): 2885–2892. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610020.htm

    TANG Wen, YAO Zhi-bin, LI Shao-jun, et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: an experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885–2892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610020.htm

    [14] 赵宇, 崔鹏, 胡良博. 黏土抗剪强度演化与酸雨引发滑坡的关系: 以三峡库区滑坡为例[J]. 岩石力学与工程学报, 2009, 28(3): 576–582. doi: 10.3321/j.issn:1000-6915.2009.03.017

    ZHAO Yu, CUI Peng, HU Liang-bo. Relation between evolution of clay shear strength and landslide induced by acid rain—taking landslides in Three Gorges reservoir area for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 576–582. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.03.017

    [15] 常锦, 杨和平, 肖杰, 等. 酸性环境干湿循环条件下膨胀土的膨胀特性及微观作用分析[J]. 中国公路学报, 2019, 32(3): 34–43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903005.htm

    CHANG Jin, YANG He-ping, XIAO Jie, et al. Swelling characteristics and microscopical analysis of expansive soil under dry-wet cycles in acid environment[J]. China Journal of Highway and Transport, 2019, 32(3): 34–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903005.htm

    [16] 常锦, 杨和平, 肖杰, 等. 酸雨入渗对膨胀土抗剪强度的影响及微观试验研究[J]. 中南大学学报(自然科学版), 2019, 50(1): 206–213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201901026.htm

    CHANG Jin, YANG He-ping, XIAO Jie, et al. Effect of acid rain infiltration on shear strength of expansive soil and its microscopic test[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 206–213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201901026.htm

    [17] 常锦, 杨和平, 肖杰, 等. 酸雨湿干循环作用下百色膨胀土裂隙发育规律及其微观机制[J]. 中国公路学报, 2021, 34(1): 47–56. doi: 10.3969/j.issn.1001-7372.2021.01.005

    CHANG Jin, YANG He-ping, XIAO Jie, et al. Fissure development law and micro-mechanism of Baise expansive soil under wet-dry cycles of acid rain[J]. China Journal of Highway and Transport, 2021, 34(1): 47–56. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.005

    [18]

    RAMA VARA PRASAD C, REDDY P H P, MURTHY V R, et al. Swelling characteristics of soils subjected to acid contamination[J]. Soils and Foundations, 2018, 58(1): 110–121. doi: 10.1016/j.sandf.2017.11.005

    [19]

    PONNAPUREDDY H R, CHAVALI R V P, PILLAI R J. Swelling of natural soil subjected to acidic and alkaline contamination[J]. Periodica Polytechnica Civil Engineering, 2017, 61(3): 449–453.

    [20]

    MAGGIO R D, GAJO A, WAHID A.S. Chemo-mechanical effects in kaolinite. part 2: exposed samples and chemical and phase analyses[J]. Géotechnique, 2011, 61(6): 449–457. doi: 10.1680/geot.8.P.068

    [21] 李善梅, 刘之葵, 蒙剑坪. pH值对桂林红黏土界限含水率的影响及其机理分析[J]. 岩土工程学报, 2017, 39(10): 1814–1822. doi: 10.11779/CJGE201710009

    LI Shan-mei, LIU Zhi-kui, MENG Jian-ping. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814–1822. (in Chinese) doi: 10.11779/CJGE201710009

    [22] MERKEL B J. 地下水地球化学模拟的原理及应用[M]. 朱义年, 王焰新, 译. 武汉: 中国地质大学出版社, 2005.

    MERKEL B J. Principle and Application of Groundwater Geochemical Modeling[M]. ZHU Yi-nian, WANG Yan-xin, trans. Wuhan: China University of Geosciences Press, 2005. (in Chinese)

    [23] 刘媛, 梁和成, 唐朝晖, 等. 滑坡水土作用体系中Ca2+的地球化学行为的反向模拟[J]. 水文地质工程地质, 2012, 39(2): 106–110. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202024.htm

    LIU Yuan, LIANG He-cheng, TANG Zhao-hui, et al. Inverse modeling of geochemical behavior of Ca2+ in landslide water-soil interaction system near the Three Gorges Reservoir[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 106–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202024.htm

    [24] 周海燕, 周训, 姚锦梅. 广东从化温泉的水文地球化学模拟[J]. 现代地质, 2007, 21(4): 619–623. doi: 10.3969/j.issn.1000-8527.2007.04.005

    ZHOU Hai-yan, ZHOU Xun, YAO Jin-mei. Hydrogeochemical modeling of the Conghua hot spring in Guangdong[J]. Geoscience, 2007, 21(4): 619–623. (in Chinese) doi: 10.3969/j.issn.1000-8527.2007.04.005

    [25] 谢水波, 陈泽昂, 张晓健, 等. 铀尾矿库区浅层地下水中U(Ⅵ)迁移的模拟[J]. 原子能科学技术, 2007, 41(1): 58–64. doi: 10.3969/j.issn.1000-6931.2007.01.011

    XIE Shui-bo, CHEN Ze-ang, ZHANG Xiao-jian, et al. Simulation of U(Ⅵ) migration in shallow groundwater at uranium mill-tailing site[J]. Atomic Energy Science and Technology, 2007, 41(1): 58–64. (in Chinese) doi: 10.3969/j.issn.1000-6931.2007.01.011

    [26]

    HIEMSTRA T, BARNETT M O, VAN RIEMSDIJK W H. Interaction of silicic acid with goethite[J]. Journal of Colloid and Interface Science, 2007, 310(1): 8–17. doi: 10.1016/j.jcis.2007.01.065

    [27] 何蕾. 矿物成分与水化学成分对黏性土抗剪强度的控制规律及其应用[D]. 北京: 中国地质大学(北京), 2014: 4–5.

    HE Lei. Impact of Mineralogical Composition and Water Chemistry on the Shear Strength of Clay and Its Application[D]. Beijing: China University of Geosciences, 2014: 4–5. (in Chinese)

    [28]

    CHIGIRA M, NAKAMOTO M, NAKATA E. Weathering mechanisms and their effects on the landsliding of ignimbrite subject to vapor-phase crystallization in the Shirakawa pyroclastic flow, northern Japan[J]. Engineering Geology, 2002, 66(1/2): 111–125.

    [29]

    ANSON R, HAWKINS A. Movement of the soper's wood landslide on the Jurassic fuller's earth, bath, England[J]. Bulletin of Engineering Geology and the Environment, 2002, 61(4): 325–345. doi: 10.1007/s10064-002-0151-8

    [30] 罗鸿禧, 周芳琴. 郧县胀缩土的矿物成分及微观结构的研究[J]. 工程勘察, 1981, 9(5): 35–38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198105008.htm

    LUO Hong-xi, ZHOU Fang-qin. Study on mineral composition and microstructure of Yunxian expansion and contraction soil[J]. Engineering Survey, 1981, 9(5): 35–38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198105008.htm

    [31] 廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO Shi-wen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)

图(12)  /  表(6)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  35
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回