Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

细粒级尾矿上游法筑坝放矿参数优选试验研究

段志杰, 李全明, 赵学义, 于玉贞, 师海

段志杰, 李全明, 赵学义, 于玉贞, 师海. 细粒级尾矿上游法筑坝放矿参数优选试验研究[J]. 岩土工程学报, 2022, 44(8): 1474-1482. DOI: 10.11779/CJGE202208012
引用本文: 段志杰, 李全明, 赵学义, 于玉贞, 师海. 细粒级尾矿上游法筑坝放矿参数优选试验研究[J]. 岩土工程学报, 2022, 44(8): 1474-1482. DOI: 10.11779/CJGE202208012
DUAN Zhi-jie, LI Quan-ming, ZHAO Xue-yi, YU Yu-zhen, SHI Hai. Experimental study on optimization of ore-drawing parameters for fine-grained tailings dams constructed by upstream method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1474-1482. DOI: 10.11779/CJGE202208012
Citation: DUAN Zhi-jie, LI Quan-ming, ZHAO Xue-yi, YU Yu-zhen, SHI Hai. Experimental study on optimization of ore-drawing parameters for fine-grained tailings dams constructed by upstream method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1474-1482. DOI: 10.11779/CJGE202208012

细粒级尾矿上游法筑坝放矿参数优选试验研究  English Version

基金项目: 

国家自然科学基金项目 51874260

“十三五”国家重点研发计划项目 2017YFC0804602

详细信息
    作者简介:

    段志杰(1995—),男,博士研究生,主要从事尾矿坝和高土石坝方面的研究工作。E-mail: duanzj17@.tsinghua.org.cn

    通讯作者:

    李全明,E-mail: 454968053@qq.com

  • 中图分类号: TU43

Experimental study on optimization of ore-drawing parameters for fine-grained tailings dams constructed by upstream method

  • 摘要: 细粒尾矿上游法筑坝,由于颗粒细,且在浓缩过程中需添加絮凝剂,放矿后尾矿难以水力分选,无法形成干滩,导致坝体稳定性较差,难以筑坝。针对细粒尾矿放矿参数优选的问题,以中国某铅锌尾矿为例,基于尾矿沉积机理,对矿浆进行沉积及流变试验,初步筛选出临界分选浓度为28%;且在55 m长的沉积模型槽内进行筑坝模型试验,分析放矿浓度、流量对尾矿流动沉积、淤积坡度及沉积尾矿物理力学性质的影响。利用模型试验优选的放矿参数在实际尾矿坝上进行放矿堆坝,取得了良好效果,验证了室内模型试验的有效性。提出的利用一维沉降与流变测试相结合初步确定矿浆分选浓度,并利用大型沉积模型槽进行堆坝模拟试验以进一步确定最优放矿参数的方法,对于细粒尾矿上游法筑坝具有工程实用价值。
    Abstract: Due to the fine particle composition of tailings and the addition of flocculant in the concentration process, the hydraulic sorting is weakened during the flow and deposition of tailings slurry, and dry beach can not be formed, resulting in lower stability of upstream-method tailings dams. The problem of optimizing the ore-drawing parameters of fine-grained tailings is studied based on the example of a lead-zinc tailings dam in China. Based on the sedimentation mechanism of tailings, the sedimentation and rheological characteristics of slurry are tested. The critical separation concentration of tailings slurry is preliminarily selected as 28%. Then, the upstream-method model tests are carried out in the 55 m-long horizontal sedimentary model flume to analyze the effects of slurry concentration and discharge rate on the tailings sediment sorting, the deposited beach slope and the physical and mechanical properties of the tailings. The drawing parameters optimized by the model tests are applied to the actual tailings dam, and good results are achieved, which fully verifies the effectiveness of the laboratory model tests. The method for preliminary determination of the critical slurry concentration by one-dimensional settlement and rheological property tests and model tests of a large sedimentation model flume is proposed to further determine the optimal drawing parameters, which has important engineering practical value for the optimization of drawing technology of fine-grained tailings dams by upstream-method.
  • 图  1   全尾矿颗粒级配曲线

    Figure  1.   Grain-size distribution curve of total tailings

    图  2   尾矿坝放矿现场照片

    Figure  2.   Photo of ore-drawing in a tailings dam

    图  3   尾矿浆一维静水沉降试验

    Figure  3.   One-dimensional deposition tests on slurry in static water

    图  4   不同浓度尾矿浆分选沉积分界面

    Figure  4.   Separation interfaces under different concentrations

    图  5   尾矿浆沉积高度随时间变化

    Figure  5.   Deposition heights of tailings slurry

    图  6   模型试验装置图

    Figure  6.   Diagram of deposition model flumes

    图  7   30%浓度时淤积坡降沿程分布

    Figure  7.   Distribution of siltation slope along path (Cw =30%)

    图  8   不同放矿浓度沉积尾矿级配曲线(Q=1.6 L/s)

    Figure  8.   Sediment-size distribution curves at different concentrations (Q=1.6 L/s)

    图  9   200 cm宽水槽内沉积干滩形态

    Figure  9.   Deposition morphology in flume with a length of 200 cm

    图  10   沉积尾矿内摩擦角沿程分布特征

    Figure  10.   Distribution characteristics of internal friction angle of sedimentary tailings

    图  11   现场不同浓度放矿干滩淤积形态

    Figure  11.   Siltation morphology at different slurry concentrations on site

    图  12   实际尾矿库内沉积尾矿颗粒级配曲线(20%放矿浓度)

    Figure  12.   Sediment-size distribution curves of tailings sediment in tailings dams (Cw =20%)

    表  1   尾矿浆流变参数表(T=20℃)

    Table  1   Rheological parameters of tailing slurry (T=20℃)

    矿浆密度/(kg·m-3) 浓度Cw /% 流变参数
    刚度系数ηM /(MPa·S) 屈服应力
    τB/Pa
    1315.3 37 8.6 0.290
    1282.5 34 7.3 0.129
    1221.6 28 6.4 0.044
    下载: 导出CSV

    表  2   尾矿沉积模型试验淤积坡度

    Table  2   Siltation slopes in deposition model tests

    试验序号 矿浆浓度
    Cw/%
    放矿流量
    Q/(L·s-1)
    淤积比降
    J/(20 m)
    1 20 0.60 0.020
    2 1.00 0.016
    3 1.60 0.014
    4 26 0.60 0.019
    5 1.00 0.017
    6 1.60 0.016
    7 30 0.60 0.019
    8 1.00 0.017
    9 1.60 0.015
    下载: 导出CSV

    表  3   沉积尾矿(原状)含水率及干密度

    Table  3   Water contents and dry densities of tailings sediment

    试验
    序号
    试验工况 与放矿口距离/m
    Cw/% Q/(L·s-1) 0 5 10 15 20
    w/% ρd/(g·cm-3) w/% ρd/(g·cm-3) w/% ρd/(g·cm-3) w/% ρd/(g·cm-3) w/% ρd/(g·cm-3)
    1 20 0.60 20.8 1.70 25.3 1.61 25.1 1.57 28.4 1.49
    2 20 1.00 20.6 1.66 25.7 1.59 28.4 1.56 28.9 1.56
    3 20 1.60 21.0 1.68 22.8 1.65 26.0 1.52 24.1 1.58
    4 26 0.60 19.6 1.74 23.9 1.66 25.6 1.62 28.1 1.52
    5 26 1.00 21.7 1.70 25.1 1.56 23.4 1.65 23.3 1.61
    6 26 1.60 24.1 1.64 24.6 1.63 22.7 1.64 28.2 1.51
    7 30 0.60 26.9 1.59 23.2 1.66 23.9 1.56 25.6 1.49
    8 30 1.00 21.7 1.61 24.2 1.63 27.6 1.50 26.0 1.62
    9 30 1.30 21.5 1.70 25.0 1.66 25.6 1.59 27.6 1.63
    注:Cw为放矿浓度,Q为排放的单宽流量,w为含水率,ρd为尾矿的干密度。
    下载: 导出CSV
  • [1]

    YIN G, WEI Z, WANG J G, et al. Interaction characteristics of geosynthetics with fine tailings in pullout test[J]. Geosynthetics International, 2008, 15(6): 428–436. doi: 10.1680/gein.2008.15.6.428

    [2]

    AZAM S, LI Q R. Tailings dam failures: a review of the last one hundred years[J]. Geotechnical News, 2008, 15(6): 50–54.

    [3] 汤优优, 陈雄. 西南某低品位硫化铅锌矿选矿试验研究[J]. 金属矿山, 2021(3): 103–109. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202103015.htm

    TANG You-you, CHEN Xiong. Experimental study on beneficiation of a low grade lead-zinc sulfide ore in southwest China[J]. Metal Mine, 2021(3): 103–109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202103015.htm

    [4]

    MARTIN T E, MCROBERTS E C, DAVIES M P. A tale of four upstream tailings dams[J]. Proceedings, Tailings Dams, 2002.

    [5] 尾矿堆积坝岩土工程技术规范: GB 50547—2010[S]. 2010.

    Technical code for geotechnical engineering of tailings embankment: GB 50547—2010[S]. 2010. (in Chinese)

    [6]

    PETTIBONE H C, KEALY C D. Engineering properties of mine tailings[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9): 1207–1225. doi: 10.1061/JSFEAQ.0001660

    [7] 路美丽, 崔莉. 影响尾矿坝渗流场的因素分析[J]. 中国安全科学学报, 2004, 14(6): 17–20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200406005.htm

    LU Mei-li, CUI Li. Analysis of factors affecting seepage field of tailings dam[J]. China Safety Science Journal, 2004, 14(6): 17–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200406005.htm

    [8]

    JEERAVIPOOLVARN S, SCOTT J D, CHALATURNYK R J. 10 m standpipe tests on oil sands tailings: long-term experimental results and prediction[J]. Canadian Geotechnical Journal, 2009, 46(8): 875–888. doi: 10.1139/T09-033

    [9]

    ITO M, AZAM S. Large-strain consolidation modeling of mine waste tailings[J]. Environmental Systems Research, 2013, 2(1): 7. doi: 10.1186/2193-2697-2-7

    [10]

    WANG S C, MAO C J, ZHANG C L, et al. Comparative study on the sedimentation rules of flotation tailing and natural clay[C]// 2010 International Conference on E-Product E-Service and E-Entertainment. Zhengzhou, 2010.

    [11]

    SALFATE E R. Predicting Void Ratio for Surface Paste Tailings Deposited in Thin Layers[D]. Vancouver: The University of British Columbia, 2011.

    [12] 尹光志, 敬小非, 魏作安, 等. 粗、细尾砂筑坝渗流特性模型试验及现场实测研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3710–3718. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2040.htm

    YIN Guang-zhi, JING Xiao-fei, WEI Zuo-an, et al. Study of model test of seepage characteristics and field measurement of coarse and fine tailings dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3710–3718. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2040.htm

    [13] 梁冰, 吕志强, 金佳旭, 等. 排浆速度对尾矿沉积影响的模型试验研究[J]. 实验力学, 2017, 32(6): 880–887. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201706020.htm

    LIANG Bing, LÜ Zhi-qiang, JIN Jia-xu, et al. Model experimental study of effect of slurry draining speed on tailings deposition[J]. Journal of Experimental Mechanics, 2017, 32(6): 880–887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201706020.htm

    [14] 钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983.

    QIAN Ning, WAN Zhao-hui. Mechanics of Sediment Transport[M]. Beijing: Science Press, 1983. (in Chinese)

    [15] 邵学军, 王兴奎. 河流动力学概论[M]. 2版. 北京: 清华大学出版社, 2013.

    SHAO Xue-jun, WANG Xing-kui. Introduction to River Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)

    [16] 巫尚蔚, 杨春和, 张超, 等. 尾矿浆沉积室内模拟试验[J]. 工程科学学报, 2017, 39(10): 1485–1492. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201710004.htm

    WU Shang-wei, YANG Chun-he, ZHANG Chao, et al. Indoor scale-down test of tailings[J]. Chinese Journal of Engineering, 2017, 39(10): 1485–1492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201710004.htm

    [17]

    FITCH B. Sedimentation of flocculent suspensions: state of the art[J]. Aiche, 1979, 25(6): 913–930. doi: 10.1002/aic.690250602

    [18]

    KÜPPER A M. Design of Hydraulic Fill[D]. Edmonton: Alberta University, 1991.

    [19]

    WINTERWERP J C, DE GROOT M B, MASTBERGEN D R, et al. Hyperconcentrated sand-water mixture flows over a flat bed[J]. Journal of Hydraulic Engineering, 1990, 116(1): 36–54. doi: 10.1061/(ASCE)0733-9429(1990)116:1(36)

    [20] 李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016.

    LI Guang-xin. Advanced Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. (in Chinese)

    [21] 徐宏达. 上游式尾矿坝的沉积规律[J]. 有色矿山, 2003(5): 40–43. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS200305011.htm

    XU Hong-da. The sedimentary law of the upstream tailing dam[J]. China Mine Engineering, 2003(5): 40–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS200305011.htm

    [22] 郭晓霞, 陈之祥, 邵龙潭, 等. 细粒铁尾矿的沉积特性与基本物理力学性质试验研究[J]. 岩土工程学报, 2020, 42(7): 1220–1227. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18245.shtml

    GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, et al. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220–1227. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18245.shtml

  • 期刊类型引用(5)

    1. 雷国钦,卢勇,戴泽宇,陈青林,张小普. 细粒级尾砂沉降规律及坝体稳定性研究. 有色金属(中英文). 2025(04): 660-667 . 百度学术
    2. 李庚辉,肖启飞,侯英剑. 某选厂高浓度铁尾矿沉积特性试验. 现代矿业. 2025(04): 217-220 . 百度学术
    3. 周罕,付俊,陈永贵,余璨,李嘉淇,李艳林. 沟谷上游式尾矿库的水力分选及沉积规律研究. 矿业研究与开发. 2023(08): 147-151 . 百度学术
    4. 陈青林,戴泽宇,王晓军,李祖贵,谢锦程,廖敏敏. 不同细粒含量尾矿沉降规律与其沉积体孔隙分布特征研究. 中国安全生产科学技术. 2023(12): 79-85 . 百度学术
    5. 李全明,段志杰,于玉贞,师海,李振涛. 尾矿坝沉积结构特征与性能演化规律研究进展. 中国安全生产科学技术. 2022(02): 6-19+2 . 百度学术

    其他类型引用(4)

图(12)  /  表(3)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  35
  • PDF下载量:  52
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-09-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回