Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

边坡随机场数字图像特征CNN深度学习及可靠度分析

姬建, 姜振, 殷鑫, 王涛, 崔红志, 张卫杰

姬建, 姜振, 殷鑫, 王涛, 崔红志, 张卫杰. 边坡随机场数字图像特征CNN深度学习及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
引用本文: 姬建, 姜振, 殷鑫, 王涛, 崔红志, 张卫杰. 边坡随机场数字图像特征CNN深度学习及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
Citation: JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011

边坡随机场数字图像特征CNN深度学习及可靠度分析  English Version

基金项目: 

国家自然科学基金面上项目 51879091

国家自然科学基金面上项目 52079045

详细信息
    作者简介:

    姬建(1983—),男,教授,博士生导师,主要从事边坡工程、岩土工程可靠度分析等方面的教学和科研工作。E-mail: ji0003an@e.ntu.edu.sg; jian.ji@hhu.edu.cn

  • 中图分类号: TU43

Slope reliability analysis based on deep learning of digital images of random fields using CNN

  • 摘要: 考虑土体强度空间变异性,提出了数字图像化随机场特征深度学习模型并进行边坡稳定可靠度分析。通过Karhunen-Loeve展开法离散边坡土体随机场并将离散结果转化为数字图像,建立起随机场图像与边坡功能函数值之间隐式关系的卷积神经网络(CNN)代理模型,进而计算随机场数字图像表征后边坡的失效概率。在建立CNN代理模型时,采用拉丁超立方抽样、贝叶斯优化和五折交叉验证以提高精度。最后以单层不排水饱和黏土边坡和双层黏性土边坡为例说明了该方法的有效性。结果表明:在随机场高维表征图像化和边坡小概率失稳情况下,所提CNN深度学习模型能够比较精确地逼近真实边坡稳定性计算结果,进而显著提高考虑随机场模拟的边坡可靠度分析计算效率。
    Abstract: Considering the spatial variability of soil strength, a deep learning model for the characteristics of random fields is proposed for reliability analysis of slope stability. The random fields of a soil slope are discretized by the Karhunen-Loeve expansion method, and the discretized results are converted into digital images. Then, a convolutional neural network (CNN) surrogate model is established to approach the implicit relationship between the images and the responses of the performance function. Based on the surrogate model, the probability of failure of the slope is calculated. When training the CNN surrogate model, the Latin-Hypercube sampling technique, Bayesian optimization and 5-fold cross-validation are employed to improve the accuracy. Finally, the effectiveness of the proposed method is demonstrated by two case studies, namely a single-layer saturated clay slope under undrained conditions and a two-layered cohesive soil slope. The results show that in the case of high dimensions and small probability, the proposed CNN deep learning model can approximate the original model accurately, and significantly reduce the computational cost of slope reliability analysis considering the simulation of the random fields.
  • 图  1   二维卷积示例图

    Figure  1.   Two-dimensional convolution computation

    图  2   基于随机场图像和卷积神经网络的边坡可靠度分析流程

    Figure  2.   Flow chart of slope reliability analysis using random field images and CNN

    图  3   单层饱和黏土边坡确定性分析结果(最大剪应变增量)

    Figure  3.   Deterministic analysis of a single layer clay slope under undrained condition (maximum shear strain increment)

    图  4   随机场离散精度与KL展开截断项数的关系(离散域: Lh=30 mLv=10 m

    Figure  4.   Relationship between discretization accuracy and number of KL truncation terms (discrete domain: Lh=30 m,Lv=10 m)

    图  5   随机场离散的一次实现(a)和预处理后的灰度图像(b)

    Figure  5.   One realization of random fields (a) and corresponding gray image after preprocessing (b)

    图  6   卷积神经网络的初步架构

    Figure  6.   Preliminary architecture of CNN

    图  7   验证集最小MAE与贝叶斯优化次数的关系

    Figure  7.   Relationship between minimum MAE of validation set and times of Bayesian optimization

    图  8   CNN模型一次训练过程

    Figure  8.   One training progress of CNN model

    图  9   边坡Fs的真实值(FDM)和预测值(CNN五折交叉验证)的对比

    Figure  9.   Comparison of Fs of slope between FDM and CNN 5-fold cross validation

    图  10   CNN与FDM的Fs经验累积分布函数对比

    Figure  10.   Comparison of empirical cumulative distribution function of Fs between CNN and FDM

    图  11   双层黏性土边坡确定性分析结果(最大剪应变增量)

    Figure  11.   Deterministic analysis results of two-layered cohesive soil slope (maximum shear strain increment)

    图  12   双层黏性土边坡随机场的一次实现

    Figure  12.   One realization of random fields for two-layered cohesive soil slope

    图  13   双层黏性土边坡工况3的Fs经验累积分布函数

    Figure  13.   Empirical cumulative distribution function of Fs under condition 3 of two-layered cohesive soil slope

    表  1   贝叶斯优化的CNN超参数

    Table  1   Bayesian optimization of CNN hyperparameters

    超参数 优化区间 默认值 最优超参数
    初始学习率 [0.0001, 0.01] 0.001 0.0010763
    L2正则化系数 [1×10-8, 1×10-2] 0.0001 0.0045945
    丢弃率 [0.2, 0.6] 0.5 0.24031
    滤波器数量Nf 8~32 16
    下载: 导出CSV

    表  2   单层不排水饱和黏土边坡可靠度分析结果的比较

    Table  2   Comparison of reliability results of single-layer undrained clay slope

    概率方法 Fs模型 样本数量 Fs均值 Fs标准差 Pf β
    LHS FDM 2000 1.240 0.205 0.104 1.259
    CNN-LHS FDM 100 1.236 0.203 0.107 1.243
    MCS BSM 100000 1.267 0.199 0.076 1.433
    下载: 导出CSV

    表  3   双层黏性土边坡的统计参数

    Table  3   Statistics parameters of two-layered cohesive soil slope

    工况 c1/kPa φ1/(°) c2/kPa φ2/(°) 分布类型 自相关函数 相关距离/m 相关系数ρcφ 重度/(kNm - 3) 弹性模量E/MPa 泊松比
    均值 变异系数 均值 变异系数 均值 变异系数 均值 变异系数 水平 垂直 γ1 γ2
    1 28 0.3 5 0.2 34 0.3 10 0.2 对数正态 高斯型 40 4 -0.5 19 20 100 0.3
    2 0.3 0.2 0.3 0.2 指数型
    3 0.2 0.1 0.2 0.1
    下载: 导出CSV

    表  4   双层黏性土边坡可靠度分析结果的比较

    Table  4   Comparison of reliability results of two-layered cohesive soil slope

    工况 概率方法 样本数量 Fs
    均值
    Fs
    准差
    Pf β
    1 LHS(基准) 1×104 1.172 0.122 0.0691 1.483
    SIR-MARS-MCS 150 1.175 0.125 0.0674 1.495
    CNN-LHS(本文) 100 1.181 1.125 0.0678 1.492
    2 LHS(基准) 1×104 0.0297 1.885
    CNN-LHS(本文) 200 1.217 1.120 0.0308 1.869
    LHS(测试) 1000 1.222 1.124 0.0300 1.881
    CNN-LHS(本文) 1.218 1.121 0.0320 1.852
    3 LHS(基准) 1×105 6.2×10-4 3.230
    CNN-LHS(本文) 600 1.261 0.088 6.4×10-4 3.220
    LHS(测试) 400 1.255 0.099 0
    CNN-LHS(本文) 1.259 0.096 0
    下载: 导出CSV
  • [1]

    LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009

    [2]

    GRIFFITHS D V, FENTON G A. Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518. doi: 10.1061/(ASCE)1090-0241(2004)130:5(507)

    [3]

    JI J, LIAO H J, LOW B K. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics, 2012, 40: 135-146. doi: 10.1016/j.compgeo.2011.11.002

    [4]

    RAHIMI M, WANG Z Y, SHAFIEEZADEH A, et al. An adaptive kriging-based approach with weakly stationary random fields for soil slope reliability analysis[C]// Eighth International Conference on Case Histories in Geotechnical Engineering. Reston, 2019: 148-157.

    [5]

    JI J, ZHANG C S, GUI Y L, et al. New observations on the application of LS-SVM in slope system reliability analysis[J]. Journal of Computing in Civil Engineering, 2017, 31(2): 06016002. doi: 10.1061/(ASCE)CP.1943-5487.0000620

    [6] 仉文岗, 洪利, 黎泳钦. 基于多元自适应回归样条的高维岩土工程问题分析[J]. 河海大学学报(自然科学版), 2019, 47(4): 359-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904015.htm

    ZHANG Wen-gang, HONG Li, LI Yong-qin. Analysis of multi-dimensional geotechnical engineering problems based on multivariate adaptive regression splines[J]. Journal of Hohai University (Natural Sciences), 2019, 47(4): 359-365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904015.htm

    [7] 谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    TAN Xiao-hui, DONG Xiao-le, FEI Suo-zhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808-816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    [8] 李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm

    LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm

    [9]

    CHARLTON T S, ROUAINIA M, DAWSON R J. Control variate approach for efficient stochastic finite-element analysis of geotechnical problems[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2018, 4(3): 04018031. doi: 10.1061/AJRUA6.0000983

    [10]

    LI D Q, ZHENG D, CAO Z J, et al. Two-stage dimension reduction method for meta-model based slope reliability analysis in spatially variable soils[J]. Structural Safety, 2019, 81: 101872. doi: 10.1016/j.strusafe.2019.101872

    [11]

    LIAO W W, JI J. Time-dependent reliability analysis of rainfall-induced shallow landslides considering spatial variability of soil permeability[J]. Computers and Geotechnics, 2021, 129: 103903. doi: 10.1016/j.compgeo.2020.103903

    [12]

    BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6): 2345-2367. doi: 10.1016/j.jcp.2010.12.021

    [13]

    PAN Q J, DIAS D. Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions[J]. Reliability Engineering & System Safety, 2017, 167: 484-493. https://www.sciencedirect.com/science/article/pii/S095183201630864X

    [14]

    HE X Z, XU H D, SABETAMAL H, et al. Machine learning aided stochastic reliability analysis of spatially variable slopes[J]. Computers and Geotechnics, 2020, 126: 103711. doi: 10.1016/j.compgeo.2020.103711

    [15]

    WANG Z Z, GOH S H. Novel approach to efficient slope reliability analysis in spatially variable soils[J]. Engineering Geology, 2021, 281: 105989. doi: 10.1016/j.enggeo.2020.105989

    [16]

    GHANEM R G, SPANOS P D. Stochastic Finite Elements: A Spectral Approach[M]. New York: Springer New York, 1991.

    [17]

    BETZ W, PAPAIOANNOU I, STRAUB D. Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 271: 109-129. doi: 10.1016/j.cma.2013.12.010

    [18]

    GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT press, 2016.

    [19]

    PALUSZEK M, THOMAS S. Practical MATLAB Deep Learning[M]. Berkeley: Apress, 2020.

    [20]

    CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975-984. doi: 10.1061/(ASCE)GT.1943-5606.0000309

    [21]

    HUANG J, GRIFFITHS D V. Determining an appropriate finite element size for modelling the strength of undrained random soils[J]. Computers and Geotechnics, 2015, 69: 506-513. doi: 10.1016/j.compgeo.2015.06.020

    [22] 李静萍, 程勇刚, 李典庆, 等. 基于多重响应面法的空间变异土坡系统可靠度分析[J]. 岩土力学, 2016, 37(1): 147-155, 165. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601019.htm

    LI Jing-ping, CHENG Yong-gang, LI Dian-qing, et al. System reliability analysis of spatially variable soil slopes using the multiple response surfaces method[J]. Rock and Soil Mechanics, 2016, 37(1): 147-155, 165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601019.htm

    [23]

    CAMI B, JAVANKHOSHDEL S, PHOON K K, et al. Scale of fluctuation for spatially varying soils: estimation methods and values[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6(4): 03120002. doi: 10.1061/AJRUA6.0001083

    [24]

    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014: arXiv: 1409.1556[cs. CV]. https://arxiv.org/abs/1409.1556

    [25]

    DENG Z P, PAN M, NIU J T, et al. Slope reliability analysis in spatially variable soils using sliced inverse regression-based multivariate adaptive regression spline[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 7213-7226. doi: 10.1007/s10064-021-02353-9

图(13)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回