Strength characteristics of deep-sea diatomite and their influences on settlement of optical cables
-
摘要: 深海硅藻土是一种深海生物硅藻成因的硅质软泥,其典型特征是含水率大、强度低。采用流体力学中的流变模型描述硅藻土,并通过流变试验建立起不排水抗剪强度与剪应变速率之间的关系,试验中还发现硅藻土具有一定的灵敏度。当光缆铺设在深海硅藻土上时,必须合理估计光缆的沉陷。采用大变形有限元方法模拟光缆与硅藻土的相互作用,其中引入考虑速率效应与应变软化的公式。基于数值结果,讨论影响光缆贯入阻力的因素和不同灵敏度下的光缆沉陷量,给出了两种典型铠装光缆在硅藻土中的沉陷量范围。Abstract: The deep-sea diatomite is a kind of siliceous ooze of deep-sea biodiatom origin, which is featured with very high water content and low strength. A rheological model in fluid mechanics is used to describe the strength of diatomite, and the relationship between the undrained shear strength of diatomite and the shear strain rate is established through the rheological tests. It is found in the tests that the sensitivity of diatomite cannot be ignored. When the optical cables are laid on the deep-sea diatomite, the cable settlement needs to be estimated reasonably. The interaction between the optical cables and the diatomite is explored using the large-deformation finite element approach, in which the effects of strain rate and strain softening are considered. Based on the numerical results, the factors affecting the penetration resistance of cables are discussed, while the cable settlements against a variety of sensitivities are investigated. The settlement ranges of two typical armored optical cables on diatomite are determined.
-
Keywords:
- diatomite /
- strain-rate dependency /
- soil sensitivity /
- finite element /
- settlement
-
-
表 1 不同St下两种光缆在硅藻土中预计沉陷量
Table 1 Expected settlements of two kinds of optical cables in diatomite under different conditions of St
灵敏度St 缆A 缆B 3 0.58D 0.93D 6 0.69D 1.21D 10 0.74D 1.26D 15 0.78D 1.34D 简化公式法(St = 1) 0.36D 0.56D -
[1] DAY R W. Engineering properties of diatomaceous fill[J]. Journal of Geotechnical Engineering, 1995, 121(12): 908-910. doi: 10.1061/(ASCE)0733-9410(1995)121:12(908)
[2] 马秋柱, 何智敏, 蔡泽明. 纳米比亚硅藻土的工程特性[J]. 水运工程, 2017, 12: 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201712014.htm MA Zhuqiu, HE Zhimin, CAI Zeming. Engineering properties of diatomite in Namibia[J]. Port & Waterway Engineering, 2017, 12: 80-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201712014.htm
[3] 任玉宾, 王胤, 杨庆. 典型深海软黏土全流动循环软化特性与微观结构探究[J]. 岩土工程学报, 2019, 41(8): 1562-1568. doi: 10.11779/CJGE201908022 REN Yubin, WANG Yin, YANG Qing. Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1562-1568. (in Chinese) doi: 10.11779/CJGE201908022
[4] 李铁刚, 熊志方. 海洋硅藻稳定同位素研究进展[J]. 海洋与湖沼, 2010, 41(4): 645-656. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201004028.htm LI Tiegang, XONG Zhifang. Research progress on stable isotopes of Marine diatoms[J]. Oceanologia Et Limnologia Sinica, 2010, 41(4): 645-656. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201004028.htm
[5] MERIFIELD R S, WHITE D J, RANDOLPH M F. The ultimate undrained resistance of partially-embedded pipelines[J]. Géotechnique, 2008, 58(6): 461-470. doi: 10.1680/geot.2008.58.6.461
[6] MERIFIELD R S, WHITE D J, RANDOLPH M F. Effect of surface heave on response of partially embedded pipelines on clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 819-829. doi: 10.1061/(ASCE)GT.1943-5606.0000070
[7] ZHANG Z, LEUNG C F, CHOW Y K. Pipe–soil interaction on free-span shoulder subject to vortex-induced vibration[J]. Canadian Geotechnical Journal, 2020, 57(11): 1704-1718. doi: 10.1139/cgj-2019-0408
[8] SENTHILKUMAR, RAJEEV, ROBERT, et al. Undrained load-displacement behavior of partially embedded pipeline on seabed[J]. Journal of Pipeline Systems Engineering and Practice, 2016, 7(1): 4015016.1.
[9] HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327-350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
[10] BISCONTIN G, PESTANA J. Influence of peripheral velocity on vane shear strength of an artificial clay[J]. Geotechnical Testing Journal, 2001, 24(4): 423-429. doi: 10.1520/GTJ11140J
[11] EINAV I, RANDOLPH M. Effect of strain rate on mobilised strength and thickness of curved shear bands[J]. Géotechnique, 2006, 56(7): 501-504. doi: 10.1680/geot.2006.56.7.501
[12] 任玉宾, 杨庆, 王胤, 等. 典型深海软黏土触变特性与微观结构探究[J]. 工程地质学报, 2021, 29(5): 1295-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105006.htm REN Yubin, YANG Qing, WANG Yin, et al. Experimental study on thixotropic characteristic and microstructural evolution of representative deep-sea soft clay[J]. Journal of Engineering Geology, 2021, 29(5): 1295-1302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105006.htm
[13] WANG D, WHITE D J, RANDOLPH M F. Large deformation finite element analysis of pipe penetration and large amplitude lateral displacement[J]. Canadian Geotechnical Journal, 2010, 47(8): 842-856.
[14] WANG D, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering[J]. Computers and Geotechnics, 2015, 65: 104-114
[15] DUTTA S, HAWLADER B, PHILLIPS R. Strain softening and rate effects on soil shear strength in modeling of vertical penetration of offshore pipelines[C]// International Pipeline Conference, Calgary, Alberta, 2012.
[16] RANDOLPH M F, WHITE D J. Pipeline embedment in deep water: processes and quantitative assessment[C]// Proc Offshore Tech Conf, Houston, 2008.