Shear properties of two-order morphology of rock joints
-
摘要: 岩石结构面表面形貌由宏观起伏体(一级)和表面微凸体(二级)两级形貌共同组成,剪切过程中各级形貌的剪切特性不尽相同。结合三维激光扫描技术、3D打印技术和模拟材料批量制作了模型结构面,开展了不同法向应力条件下的直剪试验。试验结果表明:相同法向应力条件下,二级形貌剪切磨损接近总体形貌,且大于一级形貌;不同法向应力条件下,剪切前后两级粗糙参数平均变化率随法向应力增加而逐渐增加,其中一级粗糙参数平均变化率ηI为1.99%~4.03%,二级粗糙参数平均变化率ηπ为5.97%~8.16%;进一步基于“余弦相似性”原理计算余弦夹角以评价剪切前后结构面形貌相似性,发现二级形貌余弦夹角波动最大,一级形貌余弦夹角与总体形貌余弦夹角较接近,验证了二级形貌的剪损特性和一级形貌的剪胀特性。上述研究可为结构面抗剪强度的评价提供参考意义。Abstract: The surface morphology of rock joints is composed of two-order morphology, including macroscopic undulation components (first-order) and asperities of joint surfaces (second-order), and different morphologic components contribute differently to the shear characteristics during the shearing process. 3D laser scanning, 3D printing technology and similar materials are adopted to produce different model joints in batches, and direct shear tests are carried out under different normal stress conditions. The test results show that under the same normal stress, the second-order morphology shear wear is close to the overall morphology and greater than the first-order morphology. Under different normal stresses, the average variation rate of the two-order roughness parameters gradually increases with the increase of the normal stress before and after shearing. The average variation rate of the first-order roughness parameters ηI is 1.99%~4.03%, and that of the second-order roughness parameters ηπ is 5.97%~8.16%. The cosine angle is calculated based on the principle of "cosine similarity" to evaluate the similarity of the joints before and after shearing. The cosine angle of the second-order morphology fluctuates most, the cosine angle of the first-order morphology is close to the overall morphology, and the shear wear characteristics of the second-order morphology and the shear dilatancy characteristics of the first-order morphology are verified. The above results are of reference significance for the evaluation of the shear strength of joints.
-
-
表 1 不同采样间距下结构面粗糙表面积
Table 1 Areas of joint surfaces under different sampling intervals
δ/mm S/mm2 J01 J02 J03 50 9214 9222 9229 25 9215 9226 9234 20 9216 9227 9237 10 9219 9232 9241 5 9226 9247 9254 4 9229 9250 9257 2 9236 9262 9269 1 9243 9271 9278 表 2 剪切前后粗糙参数变化率汇总
Table 2 Summary of variation rate of roughness parameters before and after shearing
法向应力
/MPa试样编号 θ∗max/(C+1)I 变化率/% 平均变化率/% θ∗max/(C+1)π 变化率/% 平均变化率/% θ∗max/(C+1)总 变化率/% 平均变化率/% 剪切前 剪切后 剪切前 剪切后 剪切前 剪切后 0.5 J01-1 4.25 4.35 2.35 1.99 4.42 4.47 1.13 5.97 5.88 5.88 0 2.18 J02-1 7.57 7.50 0.92 5.38 4.67 13.20 9.13 8.74 4.27 J03-1 10.32 10.04 2.71 6.73 6.49 3.57 11.45 11.19 2.27 1.0 J01-2 4.76 4.54 4.62 2.17 4.46 4.12 7.62 7.20 6.23 5.94 4.65 2.66 J02-2 8.72 8.74 0.23 5.33 4.78 10.32 9.60 9.54 0.63 J03-2 10.19 10.02 1.67 7.09 6.83 3.67 11.47 11.16 2.70 1.5 J01-3 4.23 3.95 6.62 3.98 4.41 4.04 8.39 7.60 5.81 6.01 3.44 2.73 J02-3 8.09 8.20 1.36 5.49 4.81 12.39 9.59 9.32 2.81 J03-3 10.13 9.73 3.95 6.91 6.77 2.03 11.33 11.11 1.94 2.0 J01-4 4.84 4.98 2.89 4.03 5.13 4.81 6.24 8.16 6.53 7.09 8.58 5.66 J02-4 9.13 9.64 5.59 5.39 4.97 7.79 10.05 10.28 2.29 J03-4 10.21 9.84 3.62 5.46 4.89 10.44 11.95 11.22 6.11 表 3 剪切前后结构面余弦夹角汇总
Table 3 Summary of cosine angle of rock joints before and after shearing
(°) 试样编号 剪切前后结构面余弦夹角 剪切后结构面余弦夹角 一级 二级 总体 一级与总体 二级与总体 J01-1 16.81 32.22 15.90 3.86 46.93 J02-1 0.92 7.25 1.01 1.60 17.85 J03-1 1.15 12.83 0.74 1.46 29.70 J01-2 1.44 57.01 0.95 1.77 35.97 J02-2 0.56 19.13 0.92 2.57 20.54 J03-2 4.94 8.39 5.08 1.06 28.10 J01-3 27.85 43.01 28.35 3.29 51.62 J02-3 1.11 28.01 1.29 1.09 15.91 J03-3 12.55 23.31 10.88 2.06 30.33 J01-4 2.50 37.60 2.37 1.07 33.76 J02-4 8.35 15.17 8.28 1.33 33.27 J03-4 6.90 45.51 8.27 1.80 33.40 -
[1] 夏才初, 唐志成, 宋英龙, 等. 节理峰值剪切位移及其影响因素分析[J]. 岩土力学, 2011, 32(6): 1654-1658. doi: 10.3969/j.issn.1000-7598.2011.06.010 XIA Cai-chu, TANG Zhi-cheng, SONG Ying-long, et al. Analysis of relationship between joint peak shear displacement and its influence factors[J]. Rock and Soil Mechanics, 2011, 32(6): 1654-1658. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.010
[2] 夏才初, 宋英龙, 唐志成, 等. 粗糙节理剪切性质的颗粒流数值模拟[J]. 岩石力学与工程学报, 2012, 31(8): 1545-1552. doi: 10.3969/j.issn.1000-6915.2012.08.007 XIA Cai-chu, SONG Ying-long, TANG Zhi-cheng, et al. Particle flow numerical simulation for shear behavior of rough joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1545-1552. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.08.007
[3] 陈世江, 朱万成, 刘树新, 等. 岩体结构面粗糙度各向异性特征及尺寸效应分析[J]. 岩石力学与工程学报, 2015, 34(1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501007.htm CHEN Shi-jiang, ZHU Wan-cheng, LIU Shu-xin, et al. Anisotropy and size effects of surface roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 57-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501007.htm
[4] BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332. doi: 10.1016/0013-7952(73)90013-6
[5] BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54. doi: 10.1007/BF01261801
[6] ISRM. International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests: Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(6): 319-368. doi: 10.1016/0148-9062(78)91472-9
[7] JAFARI M K, HOSSEINI K A, PELLET F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 619-630. doi: 10.1016/S0267-7261(03)00063-0
[8] 沈明荣, 张清照. 规则齿型结构面剪切特性的模型试验研究[J]. 岩石力学与工程学报, 2010, 29(4): 713-719. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004011.htm SHEN Ming-rong, ZHANG Qing-zhao. Experimental study of shear deformation characteristics of rock mass discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 713-719. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004011.htm
[9] YANG Z Y, TAGHICHIAN A, LI W C. Effect of asperity order on the shear response of three-dimensional joints by focusing on damage area[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 1012-1026. doi: 10.1016/j.ijrmms.2010.05.008
[10] 朱小明, 李海波, 刘博, 等. 含二阶起伏体的模拟岩体节理试样剪切特性试验研究[J]. 岩土力学, 2012, 33(2): 354-360. doi: 10.3969/j.issn.1000-7598.2012.02.006 ZHU Xiao-ming, LI Hai-bo, LIU Bo, et al. Experimental study of shear characteristics by simulating rock mass joints sample with second-order asperities[J]. Rock and Soil Mechanics, 2012, 33(2): 354-360. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.02.006
[11] 周辉, 程广坦, 朱勇, 等. 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903004.htm ZHOU Hui, CHENG Guang-tan, ZHU Yong, et al. Experimental study of shear deformation characteristics of marble dentate joints[J]. Rock and Soil Mechanics, 2019, 40(3): 852-860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903004.htm
[12] LIU X R, LIU Y Q, LU Y M, et al. Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints[J]. Structural Engineering and Mechanics, 2020, 74(3): 407-423.
[13] 刘新荣, 许彬, 黄俊辉, 等. 多形态贯通型岩体结构面宏细观剪切力学行为研究[J]. 岩土工程学报, 2021, 43(3): 406-415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103003.htm LIU Xin-rong, XU Bin, HUANG Jun-hui, et al. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 406-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103003.htm
[14] LI Y, OH J, MITRA R, et al. A constitutive model for a laboratory rock joint with multi-scale asperity degradation[J]. Computers and Geotechnics, 2016, 72: 143-151. doi: 10.1016/j.compgeo.2015.10.008
[15] 孙盛玥, 李迎春, 唐春安, 等. 天然岩石节理双阶粗糙度分形特征研究[J]. 岩石力学与工程学报, 2019, 38(12): 2502-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912010.htm SUN Sheng-yue, LI Ying-chun, TANG Chun-an, et al. Dual fractal features of the surface roughness of natural rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2502-2511. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912010.htm
[16] LI Y C, SUN S Y, TANG C A. Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3645-3657. doi: 10.1007/s00603-019-01817-5
[17] 黄曼, 洪陈杰, 杜时贵, 等. 岩石结构面形貌分级方法及两级粗糙特性研究[J]. 岩石力学与工程学报, 2020, 39(6): 1153-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006007.htm HUANG Man, HONG Chen-jie, DU Shi-gui, et al. Study on morphological classification method and two-order roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1153-1164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006007.htm
[18] HUANG M, HONG C J, DU S G, et al. Experimental technology for the shear strength of the series-scale rock joint model[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5677-5695. doi: 10.1007/s00603-020-02241-w
[19] TATONE B S A, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. The Review of Scientific Instruments, 2009, 80(12): 125110. doi: 10.1063/1.3266964
[20] TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high- resolution surface measurements[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 657-681. doi: 10.1007/s00603-012-0294-2
[21] 黄曼, 罗战友, 杜时贵. 岩石模型结构面的取样代表性试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2008-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310008.htm HUANG Man, LUO Zhan-you, DU Shi-gui. Experimental study of sampling representativeness of structural plane of rock model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2008-2014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310008.htm
[22] 洪陈杰, 黄曼, 夏才初, 等. 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098-2109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006035.htm HONG Chen-jie, HUANG Man, XIA Cai-chu, et al. Study of size effect on the anisotropic variation coefficient of rock joints[J]. Rock and Soil Mechanics, 2020, 41(6): 2098-2109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006035.htm
[23] 罗战友, 李棋, 熊志强, 等. 吻合岩石结构面一体化制作模具研制及试验对比研究[J]. 岩石力学与工程学报, 2018, 37(3): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803017.htm LUO Zhan-you, LI Qi, XIONG Zhi-qiang, et al. Development and experimental comparative study of the integrated mold for fit joint of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 689-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803017.htm
[24] 杜时贵, 黄曼, 罗战友, 等. 岩石结构面力学原型试验相似材料研究[J]. 岩石力学与工程学报, 2010, 29(11): 2263-2270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm DU Shi-gui, HUANG Man, LUO Zhan-you, et al. Similar material study of mechanical prototype test of rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2263-2270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm
[25] 黄曼. 岩石模型结构面的相似材料研制及力学可靠性研究[D]. 杭州: 浙江大学, 2012. HUANG Man. Similar Materials Developed and Mechanical Reliability Study on Model Rock Structural Plane[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[26] GRASSELLI G, WIRTH J, EGGER P. Quantitative three- dimensional description of a rough surface and parameter evolution with shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789-800. doi: 10.1016/S1365-1609(02)00070-9
[27] GRASSELLI G. Manuel rocha medal recipient shear strength of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 2006, 39(4): 295-314. doi: 10.1007/s00603-006-0100-0
[28] 唐志成, 王晓川. 不同接触状态岩石节理的剪切力学性质试验研究[J]. 岩土工程学报, 2017, 39(12): 2312-2319. doi: 10.11779/CJGE201712021 TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. (in Chinese) doi: 10.11779/CJGE201712021
-
期刊类型引用(4)
1. 许旭堂,陈翔龙,杨枫,鲜振兴,徐祥. 循环荷载对充填结构面岩体剪切特性的影响. 长安大学学报(自然科学版). 2025(01): 24-37 . 百度学术
2. 杜淼然,尹培杰,张越,晏长根,欧运起,付弘哲. 基于分形特征的3D打印岩石结构面剪切特性研究. 工程地质学报. 2025(02): 458-470 . 百度学术
3. 班力壬,杜伟升,候宇航,戚承志,陶志刚. 考虑实际接触三维粗糙度退化的软岩节理剪胀规律预测模型. 岩土工程学报. 2024(05): 1008-1017 . 本站查看
4. 焦峰,许江,彭守建,何美鑫,张心睿,程亮. 常法向刚度条件下人工结构面剪切力学特性及损伤演化规律试验研究. 煤炭学报. 2023(11): 4065-4077 . 百度学术
其他类型引用(7)