• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

排水过程三轴试样含水率分布演化规律研究

马德良, 谢一飞, 冯怀平, 李腾, 常建梅

马德良, 谢一飞, 冯怀平, 李腾, 常建梅. 排水过程三轴试样含水率分布演化规律研究[J]. 岩土工程学报, 2022, 44(8): 1425-1433. DOI: 10.11779/CJGE202208007
引用本文: 马德良, 谢一飞, 冯怀平, 李腾, 常建梅. 排水过程三轴试样含水率分布演化规律研究[J]. 岩土工程学报, 2022, 44(8): 1425-1433. DOI: 10.11779/CJGE202208007
MA De-liang, XIE Yi-fei, FENG Huai-ping, LI Teng, CHANG Jian-mei. Development of moisture content distribution of triaxial samples during drying process[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1425-1433. DOI: 10.11779/CJGE202208007
Citation: MA De-liang, XIE Yi-fei, FENG Huai-ping, LI Teng, CHANG Jian-mei. Development of moisture content distribution of triaxial samples during drying process[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1425-1433. DOI: 10.11779/CJGE202208007

排水过程三轴试样含水率分布演化规律研究  English Version

基金项目: 

国家自然科学基金项目 51478279

中央引导地方项目 216Z1805G

详细信息
    作者简介:

    马德良(1990—),男,博士研究生,主要从事非饱和土测量设备的研发工作。E-mail: madeliang@stdu.edu.cn

    通讯作者:

    冯怀平,E-mail: fenghuaiping@stdu.edu.cn

  • 中图分类号: TU43

Development of moisture content distribution of triaxial samples during drying process

  • 摘要: 三轴试验过程中试样含水率分布实时测试对吸力平衡判断、剪切速率确定和湿化变形等研究具有重要意义。通过扩展范德堡电阻率测试理论(vdP),提出了柱状土体含水率测试理论;在此基础上,研发一种厚度仅为0.1 mm的柔性印刷电极及配套的范德堡法集成测试装置。通过设计围压与温度敏感性因素试验,验证装置兼容性和可靠性。最后开展了恒压状态下的三轴干湿循环试验,并对试验过程中试样分层电阻率进行监测。试验结果表明,本套试验装置需要至少120 kPa静围压预压,以保证电极与试样完全贴合;同时试验全程静围压不低于20 kPa以保持电极紧密贴合。温度对电阻率测试精度具有一定的影响,Campbell模型可以有效修正温度带来的测试误差。浸水过程中,试样电阻率从下至上依次降低;排水过程中,试样电阻率由顶到底逐渐降低;最后提出了脱湿过程的试样分层含水率计算方法并且分析了含水率分布演化规律。
    Abstract: The real-time measurement of moisture content distribution in the triaxial tests is significant to suction balance, shear rate and wetting deformation. The principle of water content tests on triaxial samples is proposed by extending van der Pauw (vdP) resistivity theory. Moreover, the flexible printing electrode (FPE) with 0.1 mm in thickness and the vdP method device are developed. The compatibility and reliability of the device are verified through the sensitivity factor tests such as net confining pressure and temperature. Finally, the triaxial drying-wetting cycle tests under constant pressure are carried out. At the same time, the layered resistivity is monitored. The test results show that the test device needs the preloading of net confining pressure of at least 120 kPa to ensure the complete cover between the FPE and the samples, and the net confining pressure shall be more than 20 kPa to ensure the cover status in the tests. The temperature has a certain influence on the results of resistivity tests, and the Campbell model can effectively correct the temperature-introduced errors. In the process of moisture wetting, the resistivity decreasing from bottom to top can be observed dramatically. In the process of drying, the resistivity decreases gradually from top to bottom. Finally, the method for calculating the layered moisture content during drying process is proposed, and the evolution law of moisture content distribution is analyzed.
  • 图  1   电阻率测量误差随高度变化曲线

    Figure  1.   Measurement errors of resistivity with various heights

    图  2   粒径级配曲线

    Figure  2.   Grain-size distribution curves

    图  3   非饱和三轴仪改装示意图

    Figure  3.   Schematic diagram of modified unsaturated triaxial device

    图  4   柔性印刷电极

    Figure  4.   Flexible printing electrode

    图  5   电阻率测试盒

    Figure  5.   Integration resistivity device

    图  6   印刷电极与电缆连接

    Figure  6.   PFC connection between FPE and cable

    图  7   净围压加载路径

    Figure  7.   Loading paths of net confining pressure

    图  8   基质吸力调整示意图

    Figure  8.   Schematic diagram of matrix suction

    图  9   体变、净围压与电阻率随时间变化曲线

    Figure  9.   Curves of resistivity, volumetric change and net confining pressure with time

    图  10   试验结束后柔性电极状态

    Figure  10.   FPE status at end of tests

    图  11   电阻率与温度变化曲线

    Figure  11.   Curves of resistivity with various temperatures

    图  12   电阻率与修正后温度拟合

    Figure  12.   Fitting results between resistivity and correction temperature

    图  13   循环一中各层电阻率变化趋势

    Figure  13.   Tendency of resistivity of each layer in cycle I

    图  14   试样含水率沿高度分布图

    Figure  14.   Distribution of moisture content along height

    图  15   排水试验含水率分布随时间变化

    Figure  15.   Distribution of moisture content during drying process

    表  1   土的基本物理指标

    Table  1   Basic physical properties of soil

    土颗粒相对质量密度 液限/% 塑限/% 最优含水率/% 最大干密度/(gcm - 3)
    2.71 24.3 15.8 12.4 1.78
    下载: 导出CSV
  • [1] 叶云雪, 邹维列, 韩仲, 等. 非饱和土孔隙比与基质吸力关系的通用模型[J]. 岩土工程学报, 2019, 41(5): 927-933. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905020.htm

    YE Yun-xue, ZOU Wei-lie, HAN Zhong, et al. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905020.htm

    [2] 刘文化, 杨庆, 唐小微, 等. 干湿循环条件下粉质黏土在循环荷载作用下的动力特性试验研究[J]. 水利学报, 2015, 46(4): 425-432. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201504007.htm

    LIU Wen-hua, YANG Qing, TANG Xiao-wei, et al. Experimental study on the dynamic characteristics of silt clay subjected to drying-wetting cycles under cyclic loading[J]. Journal of Hydraulic Engineering, 2015, 46(4): 425-432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201504007.htm

    [3]

    CAO Z G, ZHANG Q, CAI Y Q, et al. The effects of suction history on the cyclic behavior of unsaturated road base filling materials[J]. Engineering Geology, 2020, 276: 105775. doi: 10.1016/j.enggeo.2020.105775

    [4] 张俊然, 孙德安, 姜彤. 吸力历史对非饱和弱膨胀土力学性质的影响[J]. 岩土力学, 2015, 36(11): 3094-3100, 3120. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511008.htm

    ZHANG Jun-ran, SUN De-an, JIANG Tong. Effect of suction history on mechanical behavior of unsaturated weakly-expansive soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3094-3100, 3120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511008.htm

    [5] 张俊然, 孙德安, 姜彤, 等. 宽广吸力范围内弱膨胀土的抗剪强度及其预测[J]. 岩土工程学报, 2016, 38(6): 1064-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606013.htm

    ZHANG Jun-ran, SUN De-an, JIANG Tong, et al. Shear strength of weakly expansive soils and its prediction in a wide range of suction[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1064-1070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606013.htm

    [6] 郭楠, 陈正汉, 高登辉, 等. 加卸载条件下吸力对黄土变形特性影响的试验研究[J]. 岩土工程学报, 2017, 39(4): 735-742. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704025.htm

    GUO Nan, CHEN Zheng-han, GAO Deng-hui, et al. Experimental research on influences of suction on deformation characteristics of loess under unloading-reloading conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 735-742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704025.htm

    [7] 高登辉, 陈正汉, 郭楠, 等. 干密度和基质吸力对重塑非饱和黄土变形与强度特性的影响[J]. 岩石力学与工程学报, 2017, 36(3): 736-744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm

    GAO Deng-hui, CHEN Zheng-han, GUO Nan, et al. The influence of dry density and matric suction on the deformation and the strength characteristics of the remolded unsaturated loess soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 736-744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm

    [8] 王欢, 陈群, 王红鑫, 等. 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(增刊1): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1034.htm

    WANG Huan, CHEN Qun, WANG Hong-xin, et al. Triaxial tests on fly ash with different compaction and matric suction[J]. Rock and Soil Mechanics, 2019, 40(S1): 224-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1034.htm

    [9] 高帅, 骆亚生, 胡海军, 等. 非饱和原状黄土增湿条件下力学特性试验研究[J]. 岩土工程学报, 2015, 37(7): 1313-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507021.htm

    GAO Shuai, LUO Ya-sheng, HU Hai-jun, et al. Triaxial tests on water immersion of unsaturated and undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1313-1318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507021.htm

    [10] 常建梅, 尹荣玉, 王志鹏, 等. 考虑湿化的重载铁路粉黏土基床土体骨干曲线研究[J]. 铁道学报, 2020, 42(7): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007020.htm

    CHANG Jian-mei, YIN Rong-yu, WANG Zhi-peng, et al. Study on backbone curve of silty clay in heavy-haul railway subgrade considering wetting[J]. Journal of the China Railway Society, 2020, 42(7): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007020.htm

    [11] 冯怀平, 宋慧来, 常建梅, 等. 浸水作用下重载铁路基床动回弹模量衰减规律[J]. 中国铁道科学, 2020, 41(3): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003003.htm

    FENG Huai-ping, SONG Hui-lai, CHANG Jian-mei, et al. Attenuation law of dynamic resilient modulus of subgrade bed for heavy haul railway under water immersion[J]. China Railway Science, 2020, 41(3): 21-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003003.htm

    [12] 郭楠, 陈正汉, 杨校辉, 等. 重塑黄土的湿化变形规律及细观结构演化特性[J]. 西南交通大学学报, 2019, 54(1): 73-81, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901010.htm

    GUO Nan, CHEN Zheng-han, YANG Xiao-hui, et al. Research on wetting-deformation regularity and microstructure evolution characteristics of remoulded loess in triaxial soaking tests[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 73-81, 90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901010.htm

    [13] 刘奉银, 谢定义, 俞茂宏. 一种新型非饱和土γ射线土工三轴仪[J]. 岩土工程学报, 2003, 25(5): 548-551. doi: 10.3321/j.issn:1000-4548.2003.05.006

    LIU Feng-yin, XIE Ding-yi, YU Mao-hong. A new type of triaxial apparatus with γ rays for unsaturated soils test[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 548-551. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.05.006

    [14]

    SU W, CUI Y J, QIN P J, et al. Application of instantaneous profile method to determine the hydraulic conductivity of unsaturated natural stiff clay[J]. Engineering Geology, 2018, 243: 111-117. doi: 10.1016/j.enggeo.2018.06.012

    [15]

    MUÑOZ-CASTELBLANCO J A, DELAGE P, PEREIRA J M, et al. On-sample water content measurement for a complete local monitoring in triaxial testing of unsaturated soils[J]. Géotechnique, 2012, 62(7): 595-604. doi: 10.1680/geot.10.P.129

    [16]

    CHEN Y L, WEI Z A, IRFAN M, et al. Laboratory investigation of the relationship between electrical resistivity and geotechnical properties of phosphate tailings[J]. Measurement, 2018, 126: 289-298. doi: 10.1016/j.measurement.2018.05.095

    [17] 方祥位, 申春妮, 陈正汉, 等. 原状Q2黄土CT-三轴浸水试验研究[J]. 土木工程学报, 2011, 44(10): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110017.htm

    FANG Xiang-wei, SHEN Chun-ni, CHEN Zheng-han, et al. Triaxial wetting tests of intact Q2 loess by computed tomography[J]. China Civil Engineering Journal, 2011, 44(10): 98-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110017.htm

    [18] 冯怀平, 马德良, 王志鹏, 等. 基于范德堡法的非饱和土电阻率测试方法[J]. 岩土工程学报, 2017, 39(4): 690-696. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704017.htm

    FENG Huai-ping, MA De-liang, WANG Zhi-peng, et al. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704017.htm

    [19] 杨志浩, 岳祖润, 冯怀平. 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007011.htm

    YANG Zhi-hao, YUE Zu-run, FENG Huai-ping. Experimental study on moisture migration properties in unsaturated silty subgrade[J]. Rock and Soil Mechanics, 2020, 41(7): 2241-2251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007011.htm

    [20] 王志鹏. 土体电阻率测试及其在动力湿化试验中的应用[D]. 石家庄: 石家庄铁道大学, 2016.

    WANG Zhi-peng. Soil Resistivity Testing and Its Application in Dynamic Slaking Test[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2016. (in Chinese)

    [21] 吴忠学. 考虑厚度效应的vdP法土体电阻率测试研究[D]. 石家庄: 石家庄铁道大学, 2019.

    WU Zhong-xue. A Study on the Measurement of Soil Resistivity by vdP Method Considering Effect of Sample Thickness[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.

    [22]

    CHU Y, LIU S Y, CAI G J, et al. Artificial neural network prediction models of heavy metal polluted soil resistivity[J]. European Journal of Environmental and Civil Engineering, 2021, 25(9): 1570-1590.

    [23]

    ZHANG D W, CAO Z G, FAN L B, et al. Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method[J]. Engineering Geology, 2014, 170: 80-88. https://www.sciencedirect.com/science/article/pii/S0013795213003578

    [24] 韩立华, 刘松玉, 杜延军. 温度对污染土电阻率影响的试验研究[J]. 岩土力学, 2007, 28(6): 1151-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200706015.htm

    HAN Li-hua, LIU Song-yu, DU Yan-jun. Experiment study on effect of temperature on electrical resistivity of contaminated soils[J]. Rock and Soil Mechanics, 2007, 28(6): 1151-1155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200706015.htm

    [25] 周蜜, 王建国, 范璇, 等. 珠三角地区的土壤电阻率温度修正模型[J]. 高电压技术, 2012, 38(3): 623-631. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201203017.htm

    ZHOU Mi, WANG Jian-guo, FAN Xuan, et al. Temperature correction models for soil electrical resistivity in Pearl River Delta[J]. High Voltage Engineering, 2012, 38(3): 623-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201203017.htm

    [26]

    CAMPBELL R B, BOWER C A, RICHARDS L A. Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concentration for soil extracts[J]. Soil Science Society of America Journal, 1949, 13(C): 66-69.

    [27] 张世斌, 朱才辉, 袁继国. 降雨条件下重塑黄土中水分迁移模型试验研究[J]. 水利学报, 2019, 50(5): 621-630. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201905010.htm

    ZHANG Shi-bin, ZHU Cai-hui, YUAN Ji-guo. Laboratory model tests on moisture migration in remolded loess under rainfall conditions[J]. Journal of Hydraulic Engineering, 2019, 50(5): 621-630. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201905010.htm

    [28]

    DE MELO L B B, SILVA B M, PEIXOTO D S, et al. Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol[J]. Soil and Tillage Research, 2021, 208: 104876.

    [29]

    LI H, LI T L, JIANG R J, et al. A new method to simultaneously measure the soil-water characteristic curve and hydraulic conductivity function using filter paper[J]. Geotechnical Testing Journal, 2020, 43(6): 20190162.

    [30]

    LEUNG A K, COO J L, NG C W W, et al. New transient method for determining soil hydraulic conductivity function[J]. Canadian Geotechnical Journal, 2016, 53(8): 1332-1345.

    [31] 许健, 任畅, 高靖寓, 等. 干湿循环效应下Na2SO4盐渍原状黄土渗透特性与细观机制[J]. 中南大学学报(自然科学版), 2021, 52(5): 1644-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202105025.htm

    XU Jian, REN Chang, GAO Jing-yu, et al. Influence of dry-wet cycles on hydraulic conductivity and microstructure of saline undisturbed loess with sodium sulfate[J]. Journal of Central South University (Science and Technology), 2021, 52(5): 1644-1654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202105025.htm

  • 期刊类型引用(1)

    1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术

    其他类型引用(9)

图(15)  /  表(1)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  37
  • PDF下载量:  84
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-01-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回