• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

有砟轨道路基翻浆冒泥模型试验系统的研发与应用

韩博文, 蔡国庆, 李舰, 张国光, 赵成刚

韩博文, 蔡国庆, 李舰, 张国光, 赵成刚. 有砟轨道路基翻浆冒泥模型试验系统的研发与应用[J]. 岩土工程学报, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005
引用本文: 韩博文, 蔡国庆, 李舰, 张国光, 赵成刚. 有砟轨道路基翻浆冒泥模型试验系统的研发与应用[J]. 岩土工程学报, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005
HAN Bo-wen, CAI Guo-qing, LI Jian, ZHANG Guo-guang, ZHAO Cheng-gang. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005
Citation: HAN Bo-wen, CAI Guo-qing, LI Jian, ZHANG Guo-guang, ZHAO Cheng-gang. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005

有砟轨道路基翻浆冒泥模型试验系统的研发与应用  English Version

基金项目: 

国家自然科学基金项目 52078031

国家自然科学基金项目 U2034204

北京市自然科学基金面上项目 8202038

中央高校基本科研业务费项目 2021JBM111

中央高校基本科研业务费项目 2021CZ109

详细信息
    作者简介:

    韩博文(1992—),男,博士研究生,主要从事非饱和土动力特性方面的研究工作。E-mail:18115022@bjtu.edu.cn

    通讯作者:

    蔡国庆,E-mail: guoqing.cai@bjtu.edu.cn

  • 中图分类号: TU435

Development and application of model test system for mud pumping in ballasted track subgrade

  • 摘要: 为研究既有线有砟轨道路基的翻浆冒泥机理,自主研发了一套能够模拟循环荷载-湿化耦合作用的模型试验系统。模型试样直径500 mm,由厚度分别为350 mm的路基土和200 mm的道砟组成,整个试样在高强度透明有机玻璃模型筒中制备完成。模型试验系统配备有监测荷载、位移、体积含水率和孔隙水压力的4种传感器,并通过高清相机对颗粒迁移过程进行图像捕捉。基于所研发的试验系统,针对辛泰铁路典型翻浆冒泥病害路段土样,开展翻浆冒泥模型试验。试验结果表明:动孔隙水压力是导致翻浆冒泥病害产生的关键因素。随着体积含水率的增加,动孔隙水压力引起的颗粒迁移量逐渐增加;在饱和状态下,会引起大量颗粒迁移,翻浆冒泥现象显著。试验结束时,道砟污染指数达到25%,在实际工程中已严重影响铁路的正常运营,有必要对污染道砟进行换填。
    Abstract: In order to study the mud pumping mechanism of ballasted track subgrade on the existing lines in China, a physical modelling system which can simulate the cyclic loading-wetting coupling process is developed. The model sample with a diameter of 500 mm is composed of 350 mm-thick subgrade soil and 200 mm-thick ballast. The whole sample is prepared in a high-strength transparent plexiglass model cylinder. The test system is equipped with four types of sensors to monitor the load, displacement, volumetric water content and pore water pressure, respectively. A high-definition camera is installed to observe the whole test process. The developed test system is used to carry out the mud pumping model tests on the soil samples of typical mud pumping disease sections of railway from Xindian to Taishan. The results show that the dynamic pore water pressure is the key factor for mud pumping. As the volumetric water content increases, the amount of migrated particle caused by dynamic pore water pressure gradually increases. In the saturated state, it will cause a large number of particles to migrate, and the phenomenon of mud pumping is significant. At the end of the tests, the ballast fouling index reaches 25%, which will seriously affect the normal operation of the railway in the actual project. It is necessary to replace the fouled ballast.
  • 图  1   模型试验系统

    Figure  1.   Model test system

    图  2   模型筒示意图

    Figure  2.   Schematic view of model cylinder

    图  3   辛泰铁路典型翻浆冒泥病害

    Figure  3.   Typical mud pumping disease on Xintai railway

    图  4   路基土级配曲线

    Figure  4.   Grain-size distribution curve of subgrade soil

    图  5   道砟颗粒级配曲线

    Figure  5.   Grain-size distribution curves of ballast

    图  6   模型试样制备

    Figure  6.   Preparation of model sample

    图  7   加载示意图

    Figure  7.   Loading diagram

    图  8   CLW阶段观测照片

    Figure  8.   Observation photos in CLW stage

    图  9   WS阶段观测照片

    Figure  9.   Observation photos in WS stage

    图  10   SCL阶段观测照片

    Figure  10.   Observation photos in SCL stage

    图  11   CLW阶段体积含水率演化

    Figure  11.   Evolution of volumetric water content in CLW stage

    图  12   WS阶段体积含水率演化

    Figure  12.   Evolution of volumetric water content in WS stage

    图  13   SCL阶段体积含水率演化

    Figure  13.   Evolution of volumetric water content in SCL stage

    图  14   孔隙水压力演化规律

    Figure  14.   Evolution of pore water pressure

    图  15   预加载阶段轴向位移演化

    Figure  15.   Evolution of axial displacement in pre-loading stage

    图  16   CLW阶段累积轴向位移演化

    Figure  16.   Evolution of cumulative axial displacement in CLW stage

    图  17   SCL阶段累积轴向位移演化

    Figure  17.   Evolution of cumulative axial displacement in SCL stage

    图  18   CLW阶段翻浆冒泥水平

    Figure  18.   Mud pumping level in CLW stage

    图  19   SCL阶段翻浆冒泥水平

    Figure  19.   Mud pumping level in SCL stage

    图  20   污染道砟

    Figure  20.   Fouled ballasts

    表  1   试验所用土样的基本物理参数

    Table  1   Basic physical parameters of soil

    颗粒相对质量密度Gs 液限wL/% 塑限wP/% 塑性指数IP 最优含水率wop/% 最大干密度γd, max/(g·cm-3)
    2.73 46.1 22.4 23.7 20.41 1.635
    下载: 导出CSV
  • [1] 聂如松, 冷伍明, 粟雨, 等. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010

    NIE Ru-song, LENG Wu-ming, SU Yu, et al. Physical and mechanical properties of mud pumping soils in railway subgrade bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.02.010

    [2]

    KAMRUZZAMAN A H M, HAQUE A, BOUAZZA A. Filtration behaviour of granular soils under cyclic load[J]. Géotechnique, 2008, 58(6): 517-522. doi: 10.1680/geot.2008.58.6.517

    [3]

    HAQUE A, KABIR E, BOUAZZA A. Cyclic filtration apparatus for testing subballast under rail track[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(3): 338-341. doi: 10.1061/(ASCE)1090-0241(2007)133:3(338)

    [4]

    ISRAR J, INDRARATNA B. Mechanical response and pore pressure generation in granular filters subjected to uniaxial cyclic loading[J]. Canadian Geotechnical Journal, 2018, 55(12): 1756-1768. doi: 10.1139/cgj-2017-0393

    [5]

    DUONG T V, CUI Y J, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering Geology, 2014, 171: 45-58. doi: 10.1016/j.enggeo.2013.12.016

    [6]

    DUONG T V, CUI Y J, TANG A M, et al. Physical model for studying the migration of fine particles in the railway substructure[J]. Geotechnical Testing Journal, 2014, 37(5): 20130145. doi: 10.1520/GTJ20130145

    [7]

    CHAWLA S, SHAHU J T. Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: model tests[J]. Geotextiles and Geomembranes, 2016, 44(3): 366-380. doi: 10.1016/j.geotexmem.2016.01.005

    [8] 丁瑜, 陈晓斌, 张家生, 等. 风化红砂岩残积土路基瞬态饱和区动态水压力特征试验研究[J]. 岩土力学, 2019, 40(12): 4740-4750, 4758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912022.htm

    DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, et al. Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade[J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750, 4758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912022.htm

    [9] 张升, 高峰, 陈琪磊, 等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm

    ZHANG Sheng, GAO Feng, CHEN Qi-lei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm

    [10] 杨新安, 高艳灵. 沪宁铁路翻浆冒泥病害的地质雷达检测[J]. 岩石力学与工程学报, 2004, 23(1): 116-119. doi: 10.3321/j.issn:1000-6915.2004.01.022

    YANG Xin-an GAO Yan-ling. GPR inspection for Shanghai—Nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 116-119. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.01.022

    [11]

    ANBAZHAGAN P, INDRARATNA B, RUJIKIATKAMJORN C, et al. Using a seismic survey to measure the shear modulus of clean and fouled ballast[J]. Geomechanics and Geoengineering, 2010, 5(2): 117-126. doi: 10.1080/17486020903497431

    [12]

    ANBAZHAGAN P, SU L J, BUDDHIMA I, et al. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave[J]. Journal of Applied Geophysics, 2011, 74(4): 175-184. doi: 10.1016/j.jappgeo.2011.05.002

    [13]

    ANBAZHAGAN P, DIXIT P S N, BHARATHA T P. Identification of type and degree of railway ballast fouling using ground coupled GPR antennas[J]. Journal of Applied Geophysics, 2016, 126: 183-190. doi: 10.1016/j.jappgeo.2016.01.018

    [14]

    SADEGHI J, MOTIEYAN-NAJAR M E, ZAKERI J A, et al. Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions[J]. Journal of Applied Geophysics, 2018, 151: 263-273. doi: 10.1016/j.jappgeo.2018.02.020

    [15]

    SRIVASTAVA A, SIVAKUMAR BABU G L. Analytical solutions for protective filters based on soil-retention and permeability criteria with respect to the phenomenon of soil boiling[J]. Canadian Geotechnical Journal, 2011, 48(6): 956-969. doi: 10.1139/t11-014

    [16]

    INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844. doi: 10.1061/(ASCE)1090-0241(2008)134:6(837)

    [17]

    MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071

    [18]

    SUITS L D, SHEAHAN T C, CHANG D S, et al. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotechnical Testing Journal, 2011, 34(6): 103889. doi: 10.1520/GTJ103889

    [19]

    XIAO M, SHWIYHAT N. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils[J]. Geotechnical Testing Journal, 2012, 35(6): 104594. doi: 10.1520/GTJ104594

    [20] 刘泉声, 崔先泽, 张程远, 等. 粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. doi: 10.11779/CJGE201410003

    LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, et al. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. (in Chinese) doi: 10.11779/CJGE201410003

    [21] 白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. doi: 10.11779/CJGE201510006

    BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. (in Chinese) doi: 10.11779/CJGE201510006

    [22] 薛传成, 王艳, 刘干斌, 等. 温度和pH对多孔介质中悬浮颗粒渗透迁移的影响[J]. 岩土工程学报, 2019, 41(11): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm

    XUE Chuan-cheng, WANG Yan, LIU Gan-bin, et al. Effects of temperature and pH on permeation and migration of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm

    [23] 韩博文, 冯怀平, 应志超, 等. 振动荷载作用下浸水过程对重载铁路基床变形特性影响研究[J]. 振动与冲击, 2019, 38(1): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901033.htm

    HAN Bo-wen, FENG Huai-ping, YING Zhi-chao, et al. Influences of soaking process on deformation characteristics of heavy haul railway subgrade under vibration load[J]. Journal of Vibration and Shock, 2019, 38(1): 221-228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901033.htm

    [24] 冷伍明, 周文权, 聂如松, 等. 重载铁路粗粒土填料动力特性及累积变形分析[J]. 岩土力学, 2016, 37(3): 728-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603016.htm

    LENG Wu-ming, ZHOU Wen-quan, NIE Ru-song, et al. Analysis of dynamic characteristics and accumulative deformation of coarse-grained soil filling of heavy-haul railway[J]. Rock and Soil Mechanics, 2016, 37(3): 728-736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603016.htm

    [25] 杨志浩, 岳祖润, 冯怀平, 等. 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm

    YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, et al. Large scale triaxial tests on graded macadam filling and its accumulated plastic strain prediction model[J]. Rock and Soil Mechanics, 2020, 41(9): 2993-3002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm

    [26]

    EBRAHIMI A, TINJUM J M, EDIL T B. Deformational behavior of fouled railway ballast[J]. Canadian Geotechnical Journal, 2015, 52(3): 344-355. doi: 10.1139/cgj-2013-0271

    [27]

    SELIG E T, WATERS J M. Track Geotechnology and Substructure Management[M]. New York: Thomas Telford Publishing, 1994.

图(20)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回