Propagation of fissures and deformation and failure laws of karst slopes with deep and large structural plane mining action
-
摘要: 中国西南高陡岩溶山区崩滑灾害频发,长期地下采矿活动是该区域崩滑灾害的重要诱因之一。采动作用下,坡体后缘深大结构面扩展演化控制着高陡岩溶坡体稳定性和失稳破坏模式。在野外地质调查基础上,结合室内物理模型试验和离散元数值模拟,揭示了地下开采扰动下覆岩裂隙扩展演化规律,阐明了深大结构面对边坡稳定性的控制作用,讨论了坡体变形的破坏模式。结果表明:地下开采扰动对斜坡体稳定性的影响主要表现在地下采动卸荷引起覆岩应力重分布、山体变形诱使裂隙扩展;地下采空后,斜坡体在二维剖面上形成类似“悬臂梁结构”,坡体原有深大结构面控制坡体稳定性;下行开采条件下,采空范围在断层之前,山体高度较小,在自重作用下“悬臂梁结构”岩层向断层及采空区方向协同变形,不会产生大量离层裂隙,煤层顶板仅发生断裂坍塌并充填采空区,采空至断层后,左侧山体已发生塌落,山体应力重分布,覆岩在自重作用下形成大量张拉裂隙,直接顶塌落高度与裂隙带高度也随采空区范围增加而增加。其变形破坏演化过程可概化为:地下开采卸荷-应力重分布→覆岩断裂下沉-裂隙扩展→坡体裂隙贯通-悬臂破坏→坡中变形挤出-岩桥剪断→坡体整体失稳破坏。Abstract: Collapse and slide disasters frequently occur in high and steep karst mountainous areas in Southwest China. Long-term underground mining activities are one of the important inducements of the collapse and slide disasters in these areas. Under the action of mining, the expansion and evolution of deep and large structural plane at the back edge of the slope controls the stability and instability failure mode of high and steep karst slopes. On the basis of field geological survey, combined with indoor physical model tests and discrete element numerical simulation, the propagation and evolution laws of overlying rock fractures under underground mining disturbance are revealed, the control effects of deep and large structural plane on slope stability are expounded, and the failure modes of slope deformation are discussed. The results show that the influences of underground mining disturbance on slope stability are mainly reflected in the redistribution of overburden stresses caused by underground mining unloading and the propagation of fissures induced by mountain deformation. After underground mining, the slope body forms a "cantilever structure" on the two-dimensional section, and the original deep and large structural plane of the slope body controls the stability of the slope body. Under downward mining, the goaf range is in front of the fault, and the mountain height is small. Under the action of self weight, the "cantilever structure" rock stratum cooperates to deform towards the fault and goaf, and will not produce a large number of separation fissures. The coal seam roof only breaks and collapses and fills the goaf. After the goaf reaches the fault, the mountain at the left has collapsed and the mountain stresses are redistributed. The overburden forms a large number of tension fissures under the action of self weight, and the direct roof collapse height and fracture zone height also increase with the increase of goaf range. The evolution process of deformation and failure can be generalized as follows: underground mining unloading-stress redistribution→overburden fault subsidence-fissure propagation→slope fissure penetration-cantilever failure→deformation extrusion in the slope-rock bridge shear→overall instability failure of the slope.
-
Keywords:
- mining action /
- deep and large karst fissure /
- failure mode /
- UDEC /
- cantilever beam /
- similarity model test /
- slope
-
-
表 1 岩层物理力学参数
Table 1 Physical and mechanical parameters of strata
岩性 密度/(kg·m-3) 弹性模量/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 泊松比 灰岩 2700 31.28 8.16 45 2.90 0.30 泥灰岩 2450 25.62 6.53 39 1.60 0.28 粉砂岩 2650 20.00 7.52 35 2.40 0.24 泥岩 2460 6.00 5.86 32 1.40 0.26 煤层 1350 4.00 0.52 48 0.31 0.18 表 2 岩体及其相似配比材料的试验参数
Table 2 Test parameters of stone and its similar materials
岩层 密度ρ/(kg·m-3) 弹性模量E/GPa 粉砂岩 2650 20.000 泥岩 2460 6.000 粉砂岩相似材料 1780.5 0.104 泥岩相似材料 1640.6 0.034 表 3 试验参数的相似常数
Table 3 Similarity constant of test parameters
参数 相似关系 相似常数 密度ρ αρ 1.5 长度L αL 1/200 弹性模量E αE 1/200 应力σ ασ=αE 1/300 位移u αu=αL 1/200 表 4 结构面物理力学参数表
Table 4 Physical and mechanical parameters of structural plane
节理类型 法向刚度系数/GPa 切向刚度系数/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 煤层交界面 12.0 2.7 0.08 14 0.12 其他交界面 28.0 8.4 0.09 24 0.16 灰岩节理 32.0 9.6 0.92 35 0.94 泥灰岩节理 27.0 8.2 0.78 29 0.69 粉砂岩节理 23.0 7.5 0.24 25 0.15 泥岩节理 19.0 6.3 0.19 23 0.13 -
[1] 杨忠平, 蒋源文, 李滨, 等. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 2020, 26(4): 459-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004003.htm YANG Zhong-ping, JIANG Yuan-wen, LI Bin, et al. Study on the mechanism of deep and large fracture propagation and transfixion in Karst slope under the action of mining[J]. Journal of Geomechanics, 2020, 26(4): 459-470. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004003.htm
[2] 熊飞, 刘新荣, 冉乔, 等. 采动-裂隙水耦合下含深大裂隙岩溶山体失稳破坏机理[J]. 煤炭学报, 2021, 46(11): 3445-3458. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111005.htm XIONG Fei, LIU Xin-rong, RAN Qiao, et al. Instability failure mechanism of Karst Mountain with deep and large fissures under the mining-fissure water coupling[J]. Journal of China Coal Society, 2021, 46(11): 3445-3458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111005.htm
[3] 钟祖良, 高国富, 刘新荣, 等. 地下采动下含深大裂隙岩溶山体变形响应特征[J]. 水文地质工程地质, 2020, 47(4): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004012.htm ZHONG Zu-liang, GAO Guo-fu, LIU Xin-rong, et al. Deformation response characteristics of Karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 97-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004012.htm
[4] 代张音, 唐建新, 江君, 等. 地下采空诱发含软弱夹层顺层岩质斜坡变形破裂的相似模拟[J]. 煤炭学报, 2016, 41(11): 2714-2720. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611008.htm DAI Zhang-yin, TANG Jian-xin, JIANG Jun, et al. Similarity modeling on instability and failure of rock bedding slope with weak interlayer caused by underground mining[J]. Journal of China Coal Society, 2016, 41(11): 2714-2720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611008.htm
[5] DO T N, WU J H. Simulating a mining-triggered rock avalanche using DDA: a case study in Nattai North, Australia[J]. Engineering Geology, 2020, 264: 105386. doi: 10.1016/j.enggeo.2019.105386
[6] 李滨, 王国章, 冯振, 等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报, 2015, 34(6): 1148-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506009.htm LI Bin, WANG Guo-zhang, FENG Zhen, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1148-1161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506009.htm
[7] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm YIN Yue-ping. Mechanism of apparent dip slide of inclined bedding rockslide—a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 217-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm
[8] 殷跃平, 朱继良, 杨胜元. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报, 2010, 18(4): 445-454. doi: 10.3969/j.issn.1004-9665.2010.04.002 YIN Yue-ping, ZHU Ji-liang, YANG Sheng-yuan. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology, 2010, 18(4): 445-454. (in Chinese) doi: 10.3969/j.issn.1004-9665.2010.04.002
[9] 王章琼, 晏鄂川, 尹晓萌, 等. 层状反倾岩质边坡崩塌机理研究: 以湖北鹤峰红莲池铁矿边坡为例[J]. 中南大学学报(自然科学版), 2014, 45(7): 2295-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201407022.htm WANG Zhang-qiong, YAN E-chuan, YIN Xiao-meng, et al. Study on collapse mechanism of anti inclined rock slope: a case study of Honglianchi Iron Mine slope in Hefeng, Hubei Province[J]. Journal of Central South University (Science and Technology), 2014, 45(7): 2295-2302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201407022.htm
[10] 殷跃平, 刘传正, 陈红旗, 等. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J]. 工程地质学报, 2013, 21(1): 6-15. doi: 10.3969/j.issn.1004-9665.2013.01.002 YIN Yue-ping, LIU Chuan-zheng, CHEN Hong-qi, et al. Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong County, Yunnan Province[J]. Journal of Engineering Geology, 2013, 21(1): 6-15. (in Chinese) doi: 10.3969/j.issn.1004-9665.2013.01.002
[11] CHEN L L, ZHANG W G, ZHENG Y, et al. Stability analysis and design charts for over-dip rock slope against bi-planar sliding[J]. Engineering Geology, 2020, 275: 105732. doi: 10.1016/j.enggeo.2020.105732
[12] 龙建辉, 任杰, 曾凡桂, 等. 双软弱夹层岩质滑坡的滑动模式及变形规律[J]. 煤炭学报, 2019, 44(10): 3031-3040. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201910010.htm LONG Jian-hui, REN Jie, ZENG Fan-gui, et al. Sliding mode and deformation law of double weak interlayer rock landslide[J]. Journal of China Coal Society, 2019, 44(10): 3031-3040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201910010.htm
[13] HUNGR O, EVANS S G. The occurrence and classification of massive rock slope failure[J]. Felsbau, 2004, 22(2): 16-23.
[14] THOMSON S, YACYSHYN R. Slope instability in the city of Edmonton[J]. Canadian Geotechnical Journal, 1977, 14(1): 1-16. doi: 10.1139/t77-001
[15] JONES D B, REDDISH D J, SIDDLE H J, et al. Landslides and Undermining: slope stability interaction with mining[C]// Proceedings 7th Int Soc Rock Mechanics Congress. Ratterdam, 1992.
[16] 刘传正. 重大地质灾害防治理论与实践[M]. 北京: 科学出版社, 2009: 287-493. LIU Chuan-zheng. Theory and its Application on Mega-Geo-Hazards Mitigation[M]. Beijing: Science Press, 2009: 287-493. (in Chinese)
[17] 孙玉科, 姚宝魁. 盐池河磷矿山体崩坍破坏机制的研究[J]. 水文地质工程地质, 1983, 10(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198301000.htm SUN Yu-ke, YAO Bao-kui. Mechanicsm research on the collapse of Yanchi river mining area[J]. Hydrogeology and Engineering Geology, 1983, 10(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198301000.htm
[18] 贵州省地矿局第二工程勘察院. 贵州纳雍县地质灾害调查与区划报告[EB/OL]. http://www.nagac.org.cn/.2003,10. Second Engineering Investigation Institute of Guizhou Brareau of Geology and Mineral Resources. Investigation and regionalization of geological hazards in Nayong County, Guizhou Province[EB/OL]. http://www.nagac.org.cn/.2003,10. (in Chinese)
[19] 李振峰, 靳晓敏. 应用UDEC进行顶板"三带"范围划分的数值模拟研究[J]. 矿业安全与环保, 2015, 42(4): 21-24. doi: 10.3969/j.issn.1008-4495.2015.04.006 LI Zhen-feng, JIN Xiao-min. Numerical simulation research on scope division of "three zones" in roof with UDEC[J]. Mining Safety & Environmental Protection, 2015, 42(4): 21-24. (in Chinese) doi: 10.3969/j.issn.1008-4495.2015.04.006
[20] 谢小平, 刘晓宁, 梁敏富. 基于UDEC数值模拟实验的保护层无煤柱全面卸压开采分析[J]. 煤矿安全, 2020, 51(2): 208-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202002046.htm XIE Xiao-ping, LIU Xiao-ning, LIANG Min-fu. Study on overall pressure relief mining without pillar in protective layer through UDEC numerical simulation experiment[J]. Safety in Coal Mines, 2020, 51(2): 208-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202002046.htm
[21] 赵志云, 赵冉, 白浩. 开采边坡在逆坡开采条件下的稳定性分析[J]. 煤矿安全, 2018, 49(8): 251-253, 257. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201808065.htm ZHAO Zhi-yun, ZHAO Ran, BAI Hao. Stability analysis of mining slope under reverse slope mining[J]. Safety in Coal Mines, 2018, 49(8): 251-253, 257. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201808065.htm
[22] 李滨, 冯振, 张勤. 岩溶山区特大崩滑灾害成灾模式与早期识别研究[M]. 北京: 科学出版社, 2016. LI Bin, FENG Zhen, ZHANG Qin. Research on Disaster-Causing Mode and Early Indentification of Catastrophic Landslide Disaster in Karst Mountainous Area[M]. Beijing: Science Press, 2016. (in Chinese)