• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

细粒含量对饱和珊瑚砂动力变形特性影响试验研究

吴琪, 杨铮涛, 刘抗, 陈国兴

吴琪, 杨铮涛, 刘抗, 陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003
引用本文: 吴琪, 杨铮涛, 刘抗, 陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003
WU Qi, YANG Zheng-tao, LIU Kang, CHEN Guo-xing. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003
Citation: WU Qi, YANG Zheng-tao, LIU Kang, CHEN Guo-xing. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003

细粒含量对饱和珊瑚砂动力变形特性影响试验研究  English Version

基金项目: 

国家自然科学基金项目 52008206

国家重点发展计划项目 2018YFC1504301

详细信息
    作者简介:

    吴琪(1991—),男,博士,讲师,主要从事混合料动力特性试验研究。E-mail:qw09061801@163.com

    通讯作者:

    陈国兴,E-mail: gxc6307@163.com

  • 中图分类号: TU435

Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand

  • 摘要: 为了满足南沙珊瑚岛礁及近岸军事与民事功能设施建设对珊瑚砂动力特性参数的急迫需要,系统而深入地研究珊瑚砂动力变形特性已是一项紧迫的科学任务。利用共振柱对取自南沙群岛某岛礁的珊瑚砂开展了系列动剪切模量和阻尼比特性试验研究,探究相对密度Dr、初始有效围压σm、细粒含量FC对南沙珊瑚砂动力变形的影响。试验结果表明:反映σm对最大动剪切模量Gmax影响程度的应力指数n是与土性相关的常数;结合文献中3类砂类土的Gmax试验数据,发现随等效骨架孔隙比e*sk的增大各砂类土的应力修正最大动剪切模量Gmax/(σm/pa)n单调减小,且两者呈现较好的幂函数关系;在同一应变水平下,珊瑚砂动剪切模量GFC的增大而减小,随Drσm的增大而增大;当剪应变γ < 10-4时,FCDrσm对阻尼比影响不大,而γ > 10-4时,FCDrσm对阻尼比影响显著;Drσm对动剪切模量比G/Gmax影响不明显;而当0% ≤FC ≤ 30%时,随FC增大G/Gmax -γ衰减曲线不断下降,给出了珊瑚砂Davidenkov模型拟合参数AB的建议值,且发现参考剪应变γ0FC线性减小。
    Abstract: In order to meet the urgent need for the cyclic characteristic parameters of coral sand in the proper engineering analysis of both military and civilian function facilities located in Nansha reefs and offshore marine areas, it is an important and emergent scientific task to study the dynamic deformation characteristics of the coral sand of the Nansha Islands in China. A series of resonance column tests are carried out on the saturated coral sand specimens from Nansha Islands. The aim of the tests is to investigate the effects of relative density Dr, initial effective confining pressure σm and fines content FC on the dynamic deformation characteristics of the specimens. The test results show that the stress exponent n, reflecting the rates of Gmax increment due to the enhancement of σm, presents a soil-specific constant. Synthesising the test data here and from three saturated sandy soils in the literatures, it is found that the stress-corrected maximum shear modulus Gmax/(σm/pa)n decreases monotonically with the increase of the equivalent skeleton void ratio e, and a power relationship between Gmax/(σm/pa)n and e*sk is then obtained. At the same strain level, the dynamic shear modulus G of the coral sand decreases with the increase of FC, and increases with the increase of Dr and σm. FC, Dr and σm have few effects on the damping ratio when the shear strain γ < 10-4, but have a significant effect on the damping ratio when γ > 10-4. Dr and σm have no obvious influences on the dynamic shear modulus ratio G/Gmax. When 0% ≤ FC ≤ 30%, the G/Gmax-γ attenuation curve continues to decline with the increase of FC. The recommended values of fitting parametes A and B of the Davidenkov model for the coral sand are given, and it is found that the reference shear strain γ0 decreases linearly with FC.
  • 图  1   珊瑚砂级配曲线

    Figure  1.   Grain-size distribution curves of coral sand

    图  2   不同FCDrσm下饱和珊瑚砂的G-γ曲线

    Figure  2.   Curves of G-γ of saturated coral sand with different FC, Dr and σm

    图  3   饱和珊瑚砂Gmaxσm/pa的关系曲线

    Figure  3.   Relartonship between Gmax and σm/pafor saturated coral sand

    图  4   饱和珊瑚砂Gmax/(σm/pa)nFC的关系曲线

    Figure  4.   Relationship between Gmax/(σm/pa)n and FC for saturated coral sand

    图  5   饱和珊瑚砂Gmax/(σm/pa)ne的关系曲线

    Figure  5.   Relationship between Gmax/(σm/pa)n and e for saturated coral sand

    图  6   饱和珊瑚砂Gmax/(σm/pa)nesk的关系曲线

    Figure  6.   Gmax/(σm/pa)n versus e for saturated coral sand

    图  7   文献中所述三类砂土的Gmax/(σm/pa)nesk的关系曲线

    Figure  7.   Gmax/(σm/pa)n versus e for three types of sand in literatures

    图  8   不同σm下饱和珊瑚砂G/Gmaxσm的变化关系

    Figure  8.   Relationship between G/Gmax, λ and γ of saturated coral sand with different σm

    图  9   不同Dr下珊瑚砂G/Gmaxλγ的变化关系

    Figure  9.   Relationship between G/Gmax, λ and γ of coral sand with different Dr

    图  10   不同FC下珊瑚砂G/Gmaxλγ的变化关系

    Figure  10.   Relationship between G/Gmax, λ and γ of coral sand with different FC

    图  11   珊瑚砂试样G/Gmax-γλ-γ曲线

    Figure  11.   G/Gmax-γ and λ-γ curves of coral sand specimens

    图  12   不同Drσm下饱和珊瑚砂FCAB的关系

    Figure  12.   Relationship between FC and A, B of saturated coral sand with different Dr and σm

    图  13   不同Drσm下饱和珊瑚砂FCγ0的关系

    Figure  13.   Relationship between FC and γ0 of saturated coral sand with different Dr and σm

    表  1   纯砂粒、纯细粒及不同FC的珊瑚砂基本物理指标

    Table  1   Index properties of clean sand, pure fines and coral sand.with varying FC

    物理
    指标
    细粒含量FC/%
    0 6.41 10 20 30 100
    emax 1.79 1.72 1.70 1.65 1.62 1.52
    emin 1.12 0.99 0.91 0.77 0.69 0.89
    d50/mm 0.44 0.38 0.35 0.28 0.21 0.03
    Cu 4.53 5.41 6.58 17.82 23.69
    Cc 0.91 0.71 0.84 1.59 1.19
    注:emax为最大孔隙比;emin为最小孔隙比;d50为平均粒径;Cu为不均匀系数;Cc为曲率系数。
    下载: 导出CSV

    表  2   珊瑚砂动力变形试验方案

    Table  2   Test programs for dynamic deformation characteristics of coral sand

    细粒含量FC/% 相对密度Dr /% 初始有效围压σm/kPa
    0 30, 45, 70 100, 200, 300
    10 30, 45, 70 100, 200, 300
    20 30, 45, 70 100, 200, 300
    30 30, 45, 70 100, 200, 300
    下载: 导出CSV
  • [1] 刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm

    LIU Han-long, ZHANG Yu, GUO Wei, et al. A prediction model of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm

    [2] 袁晓铭, 张文彬, 段志刚, 等. 珊瑚土工程场地地震液化特征解析[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3799-3811. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2056.htm

    YUAN Xiao-ming, ZHANG Wen-bin, DUAN Zhi-gang, et al. Analysis for characteristics of seismic liquefaction in engineering sites of coralline soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3799-3811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2056.htm

    [3] 刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm

    LIU Xin, LI Sa, LIU Xiao-long, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm

    [4]

    PANDO M A, SANDOVAL E A, CATANO J. Liquefaction susceptibility and dynamic properties of calcareous sands from Cabo Rojo, Puerto Rico[C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, 2012.

    [5]

    CARRARO J, BORTOLOTTO M. Stiffness degradation and damping of carbonate and silica sands[M]//Frontiers in Offshore Geotechnics III. Boca Raton: CRC Press, 2015: 1179-1183.

    [6]

    CATANO J, PANDO M A. Static and dynamic properties of a calcareous sand from southwest Puerto Rico[C]// GeoFlorida 2010. Orlando, 2010.

    [7]

    JAFARIAN Y, JAVDANIAN H. Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database[J]. International Journal of Civil Engineering, 2020, 18(2): 245-249. doi: 10.1007/s40999-019-00402-9

    [8]

    PHAM H H G, VANI P O V, IMPE W V, et al. Effects of grain size distribution on the initial strain shear modulus of calcareous sand[C]// 16th Geotechnical Engineering for Infrastructure and Development. ICE Publishing, 2015: 3177-3182.

    [9] 梁珂, 陈国兴, 杭天柱, 等. 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970, 1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm

    LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, et al. A new prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 2020, 41(6): 1963-1970, 1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm

    [10]

    MORSY A M, SALEM M A, ELMAMLOUK H H. Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 692-708. doi: 10.1016/j.soildyn.2018.09.030

    [11] 高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    GAO Ran, YE Jian-hong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef Islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    [12] 梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 2020, 41(1): 23-31, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm

    LIANG Ke, HE Yang, CHEN Guo-xing. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands[J]. Rock and Soil Mechanics, 2020, 41(1): 23-31, 38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm

    [13] 梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376, 1386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904016.htm

    LIANG Ke, CHEN Guo-xing, HE Yang, et al. A new method for calculation of dynamic modulus and damping ratio based on theory of correlation function[J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376, 1386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904016.htm

    [14] 史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202014.htm

    SHI Jin-quan, XIAO Yang, LIU Han-long, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202014.htm

    [15] 王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    [16] 张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. doi: 10.3969/j.issn.1000-7598.2008.10.037

    ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.10.037

    [17]

    HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.

    [18]

    WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073

    [19] 吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810024.htm

    WU Qi, CHEN Guo-xing, ZHU Yu-meng, et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810024.htm

    [20] 吴琪, 刘抗, 郭启洲, 等. 基于二元介质模型的砂类土小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641-3650. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm

    WU Qi, LIU Kang, GUO Qi-zhou, et al. A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model[J]. Rock and Soil Mechanics, 2020, 41(11): 3641-3650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm

    [21] 胡明鉴, 崔翔, 王新志, 等. 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm

    HU Ming-jian, CUI Xiang, WANG Xin-zhi, et al. Experimental study of the effect of fine particles on permeability of the calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm

    [22] 张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm

    ZHANG Chen-yang, CHEN Min, HU Ming-jian, et al. Effect of fine particles content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm

    [23] 吴琪, 陈国兴, 周正龙, 等. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究[J]. 岩土工程学报, 2018, 40(3): 475-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm

    WU Qi, CHEN Guo-xing, ZHOU Zheng-long, et al. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 475-485. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm

    [24]

    KARIM M E, ALAM M J. Effect of non-plastic silt content on the liquefaction behavior of sand-silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150. doi: 10.1016/j.soildyn.2014.06.010

    [25]

    THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils—screening and remediation issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042. https://www.sciencedirect.com/science/article/pii/S0267726102001288

    [26]

    LASHKARI A. Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62: 212-238. doi: 10.1016/j.soildyn.2014.02.012

    [27]

    RAHMAN M M, LO S R, GNANENDRAN C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. doi: 10.1139/T08-064

    [28]

    THEVANAYAGAM S, SHENTHAN T, MOHAN S, et al. Undrained fragility of clean sands, silty sands, and sandy silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 849-859. doi: 10.1061/(ASCE)1090-0241(2002)128:10(849)

    [29]

    MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z

    [30] 刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm

    LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm

    [31] 汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.

    WANG Ren, SONG Chao-jin, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing: Science Press, 1997. (in Chinese)

    [32]

    ASTM D4254-14. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density[S]. Annual Book of ASTM standards, 2006.

    [33]

    ASTM D4253-16. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table[S]. Annual Book of ASTM Standards, 2016.

    [34] 土工试验方法标准: GB/T 50123—2019[S]. 2019(Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)).
    [35] 马维嘉, 陈国兴, 吴琪. 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm

    MA Wei-jia, CHEN Guo-xing, WU Qi. Experimental study on liquefaction resistance of coral sand under complex loading conditions[J]. Rock and Soil Mechanics, 2020, 41(2): 535-542, 551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm

    [36]

    LIU X, LI S, SUN L Q. The study of dynamic properties of carbonate sand through a laboratory database[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3843-3855. doi: 10.1007/s10064-020-01785-z

    [37]

    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760

    [38]

    IWASAKI T, TATSUOKA F. Effects of grain size and grading on dynamic shear moduli of sands[J]. Soils and Foundations, 1977, 17(3): 19-35. doi: 10.3208/sandf1972.17.3_19

    [39]

    YANG J, LIU X. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 2016, 66(6): 500-514. doi: 10.1680/jgeot.15.P.205

    [40]

    CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 242-253. doi: 10.1139/t01-082

    [41]

    GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973-983. doi: 10.1016/j.sandf.2016.11.003

    [42]

    WICHTMANN T, NAVARRETE HERNÁNDEZ M A, TRIANTAFYLLIDIS T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 103-114. doi: 10.1016/j.soildyn.2014.10.017

    [43]

    DARENDELI M B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[M]. Austin: The University of Texas at Austin, 2001.

    [44]

    MARTIN P P, SEED H B. One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7): 935-952. doi: 10.1061/AJGEB6.0001316

    [45] 陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm

    CHEN Guo-xing, LIU Xue-zhu, ZHU Ding-hua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm

    [46] 丁祖德, 黄娟, 袁铁映, 等. 昆明泥炭质土动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2017, 38(12): 3627-3634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712031.htm

    DING Zu-de, HUANG Juan, YUAN Tie-ying, et al. Experimental study of dynamic shear modulus and damping ratio of peaty soil in Kunming[J]. Rock and Soil Mechanics, 2017, 38(12): 3627-3634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712031.htm

    [47] 袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm

    YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm

    [48]

    KOKUSHO T. Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60. https://www.jstage.jst.go.jp/article/sandf1972/20/2/20_2_45/_article

    [49]

    SEED H B, IDRISS I M. Soil Moduli and Damping Factors for Dynamic Analysis[R]. Berkeley: University of California, 1970.

图(13)  /  表(2)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  60
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-07-31

目录

    /

    返回文章
    返回