• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

融合观测信息的降雨诱发斜坡失稳机理及可靠度分析

蒋水华, 刘贤, 黄发明, 黄劲松, 张婉彤

蒋水华, 刘贤, 黄发明, 黄劲松, 张婉彤. 融合观测信息的降雨诱发斜坡失稳机理及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1367-1375. DOI: 10.11779/CJGE202208001
引用本文: 蒋水华, 刘贤, 黄发明, 黄劲松, 张婉彤. 融合观测信息的降雨诱发斜坡失稳机理及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1367-1375. DOI: 10.11779/CJGE202208001
JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHANG Wan-tong. Rainfall-induced slope failure mechanism and reliability analyses based on observation information[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1367-1375. DOI: 10.11779/CJGE202208001
Citation: JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHANG Wan-tong. Rainfall-induced slope failure mechanism and reliability analyses based on observation information[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1367-1375. DOI: 10.11779/CJGE202208001

融合观测信息的降雨诱发斜坡失稳机理及可靠度分析  English Version

基金项目: 

国家自然科学基金项目 52179103

国家自然科学基金项目 41867036

国家自然科学基金项目 41972280

江西省自然科学基金项目 20212BAB204054

水资源与水电工程科学国家重点实验室开放研究基金项目 2019SGG03

江西省研究生创新基金项目 YC2020-S123

详细信息
    作者简介:

    蒋水华(1987—),男,江西九江人,博士,副教授,博士生导师,主要从事岩土工程可靠度和灾害风险分析方面的研究工作。E-mail: sjiangaa@ncu.edu.cn

    通讯作者:

    黄发明,E-mail: faminghuang@ncu.edu.cn

  • 中图分类号: TU47

Rainfall-induced slope failure mechanism and reliability analyses based on observation information

  • 摘要: 目前降雨诱发滑坡机理及可靠度研究不仅很少同时考虑土体水力参数和抗剪强度参数空间变异性的影响,而且忽略了“天然工况下斜坡基本上不会发生失稳破坏”这一客观事实。以无限长斜坡模型为例,融合观测信息提前对空间变异抗剪强度参数进行概率反演分析,再建立非平稳随机场模型模拟土体渗透系数的空间变异性及非平稳分布特征,在蒙特卡洛模拟框架下评估不同降雨历时下斜坡失效概率及最危险滑动面分布特征。在此基础上,探讨同时考虑土体水力参数和抗剪强度参数空间变异性的降雨诱发斜坡失稳机理。结果表明:利用概率反演获得的抗剪强度参数后验信息,计算的斜坡失效概率由先验的28.1%降至7.2%。不同降雨阶段斜坡失稳的诱因不同,如果忽略“天然工况下斜坡不会失稳破坏”这一观测信息,将会造成对降雨诱发斜坡失稳机理和失效概率的错误估计,特别是在降雨初期。
    Abstract: The rainfall-induced slope failure mechanism and reliability analyses rarely consider the spatial variability of hydraulic and shear strength parameters at the same time and ignore a fact that the slopes always keep stable under the natural condition. An infinite slope model is taken as an example to conduct probabilistic back analyses of spatially varying shear strength parameters using the observation information in advance. Then, a non-stationary random field model is established to simulate the spatial variability and non-stationary distribution feature of the hydraulic conductivity. The probabilities of slope failure and distributions of the critical slip surface under different rainfall durations are evaluated within the framework of Monte-Carlo simulation. Based on these, the rainfall-induced slope failure mechanisms considering the spatial variability of hydraulic and shear strength parameters simultaneously are investigated. The results indicate that the probability of slope failure evaluated based on the posterior information of shear strength parameters obtained from the probabilistic back analyses is reduced from 28.1% (prior) to 7.2%. It is found that the triggering factors for the slope instability are different for different rainfall stages. The rainfall-induced slope failure mechanism and probability of failure will be erroneously evaluated, especially at the initial stage of rainfall, if the field observation information is ignored.
  • 北疆供水渠道在进行渠道设计时,不仅仅要考虑经济最优和保证流量最优的问题,还需要考虑渠道的冬季冻胀破坏。梯形渠道占中国输水渠道的比例较大,应用较广。因此,梯形渠道的冻胀问题受到了北方寒区广泛关注。王正中等[1-2]对梯形渠道冻胀模型进行了理论分析,将梯形渠道考虑为在切向冻结力、法向冻胀力的以及衬砌板约束下的简支梁,王正中等[3]、刘旭东等[4]、李爽等[5]用数值模拟的方法模拟梯形断面形式下冻胀的规律,得到了温度场,位移场沿着渠道分布情况。

    本文主要研究不同梯形断面情况下,以北疆某供水工程总干渠退水渠段梯形渠道为例,对该渠道用comsol进行数值模拟,对不同的断面渠道进行参数化模拟,得到最佳参数范围,并结合水力最佳断面,得到双优断面形式,为寒区渠道设计提供参考。

    渠基土冻结时,土体、水和冰之间的相互作用的微观结构及动态过程相当复杂,目前很难准确模拟整个冻胀过程。为了便于分析,对其进行适当的简化,以便抓住影响冻结过程中及冻胀变形的主要特征,主要假设如下[6]:①根据现场及室内试验研究,假设冻土是均匀连续各向同性体;②尽管土的冻胀与其温度、水分、土质密切相关,对具体工程当水分及土壤条件确定时土体最终冻胀主要取决于温度,将水分迁移对冻土的体积影响,以线膨胀系数表达;③根据试验研究假定相变温度在同一种土中和同种外力条件下为常值,即暂取相变温度为0℃[7];④由于渠道为细长结构,不考虑长方向上土颗粒对温度的影响,选取平面应变问题进行模拟。

    根据以上假设,将温度热传递视为二维瞬态热传递的过程,建立二维热传导控制方程:

    (λx2Tx2)+(λy2Ty2)=ρcTt
    (1)

    式中T为温度;λxλy分别是冻土沿xy方向的导热系数;ρ为土体的密度;c为土体的比热容;t为时间。

    冻土属于冷胀热缩材料,冻土在冻结过程中水冻结成冰,除了原位水冻结体积膨胀,还有从未冻结区向冻结区迁移的水分冻结成冰,本文将原位水以及迁移水冻结成冰的体积膨胀以关于温度T的函数的线膨胀系数表示。因此,土体的本构方程可以表示为

    ϵx=σxEμσyE+α(TTrefϵy=σyEμσxE+α(TTref) γxy=2(1+μ)Eτxy }
    (2)

    式中εxεy为正应变;γxy为剪应变;σxσy为正应力;τxy为剪应力;E为弹性模量;μ为泊松比,α为混凝土或者冻土自由冻胀时的热膨胀系数;T为计算温度;Tref为参考温度。

    本文选择北疆地区某输水渠道退水渠段的梯形渠道(图 1)为研究对象,原型渠道的基本情况如表 12所示,并对该模型渠道进行了冻胀模拟分析计算,因原型渠道各部位坡向,土质,水分不同,在模型边界设置时对阴阳破和渠堤分别对温度和土体冻胀率赋值。

    图  1  北疆输水渠道尺寸
    Figure  1.  Sizes of a canal in Northern Xinjiang
    表  1  渠道各部位的表面温度以及冻结期
    Table  1.  Surface temperatures and freezing periods of various parts of canal
    部位 月平均表面温度/(℃) 冻结期、(月-日)
    12月 1月 2月
    阴坡 -14.92 -18.85 -10.72 11-27—02-27
    渠底 -14.56 -16.22 -9.15 11-27—02-26
    阳坡 -12.55 -14.75 -10.54 11-27—02-27
    下载: 导出CSV 
    | 显示表格
    表  2  原型渠道基本情况
    Table  2.  Basic information of prototype canal
    部位 渠床
    土质
    基土干密度/(g·cm-3) 冻深h/cm 冻胀量Δh/cm 冻胀率η/%
    阴坡 砂砾石 1.80 171 5.0 2.92
    渠底 159 4.4 2.77
    阳坡 146 3.7 2.53
    下载: 导出CSV 
    | 显示表格

    有限元计算模型为:①原型梯形断面渠道冻胀数值模拟;②梯形断面渠道冻胀“参数化”断面渠道数值模拟。

    有限元模型如图 2所示,选取各表面温度接近原型渠道,渠道两边设置为热绝缘边界,下边界为固定温度边界取10℃,阴坡边界温度取冻结期平均值-14.8℃,渠底温度取-13.3℃,阳坡温度为-12.6℃。几何模型如图 2所示,渠底长2.0 m,渠坡的横向长度为3.75 m,坡比为1.5,基础底向下取2.5 m,左右边界取0.75 m。模型将衬砌板与冻土作为一个整体进行数值模拟,力学的边界设置时,左右边界设置为辊支撑,底部设置指定位移0。

    图  2  梯形断面有限元网格图
    Figure  2.  Finite element grids of trapezoidal canal section

    参考文献[5]中线膨胀系数按照η/Tmin取值,η为冻胀率,Tmin为相应部位月平均表面温度的最小值。由式(2),将T-Tref看成1℃,那么可以将线膨胀系数α考虑跟温度Tmin相关的函数,数值上与冻胀率相等。未冻土与混凝土的导热系数参考文献[3],冻土的导热系数与土体的未冻水含量相关,冻土融土导热系数比与未冻水含量相关[9],模型渠道的未冻水含量选取19.4%,因此冻土的导热系数为未冻土导热系数的0.9倍。

    图 3可以看出:接近于渠底的温度分布接近于一组平行的直线,0℃等温线以上,由于未冻水冻结导致剧烈相变,该区域导热系数小,因此等温线较密集,温度梯度比较小;0℃等温线以下,导热系数较大,等温线较稀疏。阴坡冻深为162 cm,渠底冻深为146 cm,阳坡的冻深为141 cm。与表 3模型试验较符合,最大相对误差为8.2%。

    图  3  渠道温度场分布
    Figure  3.  Distribution of temperature field of canal
    表  3  材料热力学参数
    Table  3.  Thermodynamic parameters of materials
    介质 弹性模量E/Pa 泊松比ν 导热系数λ/(W·m-1·℃) 线膨胀系数α/℃-1
    混凝土 2.4×1010 0.167 1.580 1.1×10-5
    冻土 4.6×107 0.330 1.188[9] 阴坡2.92%、渠底2.77%、阳坡2.53%
    未冻土 1.5×107 0.375 1.320 0
    下载: 导出CSV 
    | 显示表格

    图 4所示的是模拟得到的结果与试验结果进行对比,模型试验结果冻胀量边坡较大,渠底较小。模型试验的冻胀量整体比模拟冻胀量大,因为模型试验所用的衬砌板受到边坡的约束较大,且衬砌板厚度小于模拟设定厚度。模拟得到渠底冻胀量比较平缓而试验得到的渠底中间部位冻胀量大而两边小,模拟设定的衬砌板是整体现浇型板,在冻胀力的作用下容易产生整体变形;而模型试验的衬砌板分布较为离散。

    图  4  法向冻胀量比较
    Figure  4.  Comparison of normal frost-heave quantity

    根据梯形断面的设计规范要求,应满足:①渠道边坡系数应不小于允许最小边坡系数,应不大于允许最大边坡系数,1≤m≤2。②渠道的宽深比应满足规范给定的要求,0.8 < b/h < 3.5。

    根据要求,“参数化”分析模拟了宽深比β一定时,不同边坡比的渠道断面冻胀量情况;和边坡比一定时,不同宽深比的渠道断面冻胀量情况。

    图 5,宽深比一定时,边坡比越小,渠坡的法向冻胀量越大;m=2时,左侧阴坡法向冻胀量最大为5.2 cm,阳坡为1.7 cm。m=1时,阴坡法向冻胀量最大值为3.3 cm。由图 6,边坡比一定时,宽深比对法向冻胀量影响不大。

    图  5  不同坡比法向冻胀量比较
    Figure  5.  Comparison of normal frost-heave quantity under different slopes
    图  6  不同宽深比法向冻胀量比较
    Figure  6.  Comparison of normal frost-heave quantity under different breadth depth ratios

    从设计角度考虑水力最佳断面通常是指过水流量一定,所要求的过水断面面积最小,也就是所需要的材料最少,施工且最方便[12]。或者是过水断面面积一定,所通过的流量最大。

    考虑最小冻胀量,所以采用边坡比为2的冻胀断面。水力学中考虑流量一定,过水断面面积最小可采用以下公式计算宽深比[13]

    β=21+m21)
    (3)

    将相关参数代入式(3),可得到考虑水力冻胀最优宽深比为2.472。

    本文利用comsol有限元软件,对北疆供水渠道以及渠基土冻胀破坏规律进行有限元分析,与试验数据对比,基本与试验数据相似。对不同坡比以及不同宽深比的渠道进行有限元模拟分析,发现坡比影响冻胀量的大小,坡比越大,渠道冻胀量越小。理论分析受力情况易得坡比越大越能释放变形,符合实际。再结合水力最佳断面的公式,可以得到最佳宽深比。最终的断面形式能有效的防止冻胀,且满足水力断面要求。为北疆地区渠道防冻胀断面设计提供了理论支撑。

  • 图  1   无限长斜坡模型及单位滑块随机场离散

    Figure  1.   Diagram of an infinite slope model and random fields discretization for a unit soil column

    图  2   天然工况下斜坡安全系数频率直方图及累积分布函数

    Figure  2.   Histogram and cumulative distribution of factor of safety under natural condition

    图  3   沿埋深方向有效黏聚力先验与后验统计特征的比较

    Figure  3.   Comparison of prior and posterior statistics of effective cohesions along depth

    图  4   沿埋深方向有效内摩擦角先验与后验统计特征的比较

    Figure  4.   Comparison of prior and posterior statistics of effective friction angles along depth

    图  5   基于参数后验样本计算的斜坡安全系数频率直方图及累积分布函数

    Figure  5.   Histogram and cumulative distribution of factor of safety based on posterior samples of shear strength parameters

    图  6   斜坡失效概率随降雨历时的变化关系曲线

    Figure  6.   Variation of probability of slope failure with rainfall durations

    图  7   基于抗剪强度参数后验信息计算的斜坡最危险滑动面深度频率直方图的比较

    Figure  7.   Comparison of histogram of depth of critical slip surface based on posterior information of shear strength parameters

    表  1   土体物理力学参数取值[5]

    Table  1   Values of physical parameters of soil

    饱和渗透系数ks/(cm·h-1) 饱和含水率θs/% 水力参数a/kPa 有效内摩擦角φ/(°) 土体干重度γd/(kN·m-3) 初始含水率θi/% 残余含水率θr/% 水力参数n 有效黏聚力c/kPa 水的重度γw/(kN·m-3)
    2.70.6z 33.5 6.993 32 16 18.5 0 1.556 5 9.8
    注:表中z为土体埋深。
    下载: 导出CSV
  • [1] 詹良通, 刘小川, 泰培, 等. 降雨诱发粉土边坡失稳的离心模型试验及雨强-历时警戒曲线的验证[J]. 岩土工程学报, 2014, 36(10): 1784-1790. doi: 10.11779/CJGE201410004

    ZHAN Liang-tong, LIU Xiao-chuan, TAI Pei, et al. Centrifuge modelling of rainfall-induced slope failure in silty soils and validation of intensity-duration curves[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1784-1790. (in Chinese) doi: 10.11779/CJGE201410004

    [2] 孙子涵, 王述红, 杨天娇, 等. 降雨条件下多层土坡入渗机理与稳定性分析[J]. 东北大学学报(自然科学版), 2020, 41(8): 1201-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202008022.htm

    SUN Zi-han, WANG Shu-hong, YANG Tian-jiao, et al. Infiltration mechanism and stability analysis of multilayer soil slope under rainfall conditions[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1201-1208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202008022.htm

    [3]

    SANTOSO A M, PHOON K K, QUEK S T. Effects of soil spatial variability on rainfall-induced landslides[J]. Computers & Structures, 2011, 89(11/12): 893-900.

    [4]

    CHO S E. Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability[J]. Engineering Geology, 2014, 171: 11-20. doi: 10.1016/j.enggeo.2013.12.015

    [5]

    DOU H Q, HAN T C, GONG X N, et al. Effects of the spatial variability of permeability on rainfall-induced landslides[J]. Engineering Geology, 2015, 192: 92-100. doi: 10.1016/j.enggeo.2015.03.014

    [6]

    SMITH M, KONRAD J M. Assessing hydraulic conductivities of a compacted dam core using geostatistical analysis of construction control data[J]. Canadian Geotechnical Journal, 2011, 48(9): 1314-1327. doi: 10.1139/t11-038

    [7]

    SHEN P, ZHANG L M, ZHU H. Rainfall infiltration in a landslide soil deposit: importance of inverse particle segregation[J]. Engineering Geology, 2016, 205: 116-132. doi: 10.1016/j.enggeo.2015.09.008

    [8]

    CAI J S, YEH T C J, YAN E C, et al. Uncertainty of rainfall-induced landslides considering spatial variability of parameters[J]. Computers and Geotechnics, 2017, 87: 149-162. doi: 10.1016/j.compgeo.2017.02.009

    [9]

    XUE Y, WU Y P, MIAO F S, et al. Effect of spatially variable saturated hydraulic conductivity with non-stationary characteristics on the stability of reservoir landslides[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 311-329. doi: 10.1007/s00477-020-01777-1

    [10] 蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, 2020, 42(5): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    JIANG Shui-hua, LIU Xian, HUANG Fa-ming, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    [11] 胡长明, 梅源, 刘增荣, 等. 湿陷性黄土高贴坡变形模式和稳定性分析[J]. 岩石力学与工程学报, 2012, 31(12): 2585-2592. doi: 10.3969/j.issn.1000-6915.2012.12.024

    HU Chang-ming, MEI Yuan, LIU Zeng-rong, et al. Deformation mode and stability analysis of high sticking slope of collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2585-2592. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.024

    [12] 李媛, 孟晖, 董颖, 等. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004, 15(2): 29-34. doi: 10.3969/j.issn.1003-8035.2004.02.005

    LI Yuan, MENG Hui, DONG Ying, et al. Main types and characterisitics of geo-hazard in China: based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. (in Chinese) doi: 10.3969/j.issn.1003-8035.2004.02.005

    [13] 孙广忠, 姚宝魁. 中国典型滑坡[M]. 北京: 科学出版社, 1998.

    SUN Guang-zhong, YAO Bao-kui. Typical Slopes in China[M]. Beijing: Science Press, 1998. (in Chinese)

    [14] 戚国庆. 降雨诱发滑坡机理及其评价方法研究: 非饱和土力学理论在降雨型滑坡研究中的应用[D]. 成都: 成都理工大学, 2004.

    QI Guo-qing. Study on the Mechanics of Rainfall-Induced Landslide and Its Evaluating Method: the Research of Landslide Due to Rainfall Applying Theories of Unsaturated Soils Mechanics[D]. Chengdu: Chengdu University of Technology, 2004. (in Chinese)

    [15]

    STRAUB D, PAPAIOANNOU I. Bayesian updating with structural reliability methods[J]. Journal of Engineering Mechanics, 2015, 141(3): 04014134. doi: 10.1061/(ASCE)EM.1943-7889.0000839

    [16]

    ZHANG L L, ZHANG J, ZHANG L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7/8): 905-912.

    [17] 蒋水华, 冯泽文, 刘贤, 等. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 2020, 41(1): 325-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm

    JIANG Shui-hua, FENG Ze-wen, LIU Xian, et al. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 2020, 41(1): 325-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm

    [18]

    PHOON K K, RETIEF J V, CHING J, et al. Some observations on ISO2394: 2015 annex D (reliability of geotechnical structures)[J]. Structural Safety, 2016, 62: 24-33. doi: 10.1016/j.strusafe.2016.05.003

    [19] 陈朝晖, 黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型[J]. 岩土工程学报, 2020, 42(7): 1247-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007012.htm

    CHEN Zhao-hui, HUANG Kai-hua. Non-homogeneous random field model for reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1247-1256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007012.htm

    [20]

    ALI A, HUANG J S, LYAMIN A V, et al. Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes[J]. Engineering Geology, 2014, 179: 102-116. doi: 10.1016/j.enggeo.2014.06.024

    [21]

    YUAN J, PAPAIOANNOU I, STRAUB D. Probabilistic failure analysis of infinite slopes under random rainfall processes and spatially variable soil[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2019, 13(1): 20-33. doi: 10.1080/17499518.2018.1489059

    [22]

    SIMUNEK J, VAN GENUCHTEN M T, SEJNA M. The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Version 4.16, HYDRUS Software Series 3[M]. California: Department of Environmental Sciences, University of California Riverside, 2013.

    [23]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x

    [24]

    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513

    [25]

    RAY R L, JACOBS J M, DE ALBA P. Impacts of unsaturated zone soil moisture and groundwater table on slope instability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1448-1458. doi: 10.1061/(ASCE)GT.1943-5606.0000357

    [26] 李典庆, 祁小辉, 周创兵, 等. 考虑参数空间变异性的无限长边坡可靠度分析[J]. 岩土工程学报, 2013, 35(10): 1799-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310006.htm

    LI Dian-qing, QI Xiao-hui, ZHOU Chuang-bing, et al. Reliability analysis of infinite soil slopes considering spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1799-1806. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310006.htm

    [27]

    LI D Q, QI X H, PHOON K K, et al. Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes[J]. Structural Safety, 2014, 49: 45-55. doi: 10.1016/j.strusafe.2013.08.005

    [28]

    JIANG S H, LI D Q, ZHANG L M, et al. Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method[J]. Engineering Geology, 2014, 168: 120-128. doi: 10.1016/j.enggeo.2013.11.006

    [29]

    DEPINA I, OGUZ E A, THAKUR V. Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models[J]. Computers and Geotechnics, 2020, 125: 103660. doi: 10.1016/j.compgeo.2020.103660

    [30] 蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm

    JIANG Shui-hua, LIU Yuan, ZHANG Xiao-bo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm

    [31]

    CHRISTIAN J T, BAECHER G B. Unresolved problems in geotechnical risk and reliability[C]// Georisk 2011. June 26-28, 2011, Atlanta, Georgia, USA. Reston, VA, USA: American Society of Civil Engineers, 2011: 50-63.

    [32]

    WAI R C T, LEE R W H, LAW R H C. Review of Landslides in 2016[R]. Hong Kong: Hong Kong Geotechnical Engineering Office (GEO), 2016.

图(7)  /  表(1)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  37
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 网络出版日期:  2022-09-21
  • 刊出日期:  2022-07-31

目录

/

返回文章
返回