Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

温度梯度作用下非饱和土中铅离子迁移机理研究

周凤玺, 罗玚, 马强

周凤玺, 罗玚, 马强. 温度梯度作用下非饱和土中铅离子迁移机理研究[J]. 岩土工程学报, 2023, 45(9): 1822-1830. DOI: 10.11779/CJGE20220741
引用本文: 周凤玺, 罗玚, 马强. 温度梯度作用下非饱和土中铅离子迁移机理研究[J]. 岩土工程学报, 2023, 45(9): 1822-1830. DOI: 10.11779/CJGE20220741
ZHOU Fengxi, LUO Yang, MA Qiang. Migration mechanism of lead ions in unsaturated loess under temperature gradient[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1822-1830. DOI: 10.11779/CJGE20220741
Citation: ZHOU Fengxi, LUO Yang, MA Qiang. Migration mechanism of lead ions in unsaturated loess under temperature gradient[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1822-1830. DOI: 10.11779/CJGE20220741

温度梯度作用下非饱和土中铅离子迁移机理研究  English Version

基金项目: 

国家自然科学基金项目 11962016

国家自然科学基金项目 51978320

甘肃省基础研究创新群体项目 20JR5RA478

甘肃省教育厅高校教师创新基金项目 2023A-164

详细信息
    作者简介:

    周凤玺(1979—),男,博士,教授,主要从事岩土工程方面的教学和科研工作。E-mail: geolut@163.com

  • 中图分类号: TU431

Migration mechanism of lead ions in unsaturated loess under temperature gradient

  • 摘要: 基于多孔介质理论及连续介质热弹性力学,研究了温度梯度作用下重金属离子在非饱和黄土中的迁移机理。首先,通过非等温吸附试验确定了黄土颗粒对铅离子的吸附模型;其次,以固、液、气三相系统中各组分质量、能量以及动量守恒方程为基础,建立了表征温度梯度下非饱和土中污染物迁移的多场耦合数学模型,模型考虑了重金属离子的吸附、孔隙流体的迁移及相变、温度梯度下土体的变形等因素,以温度、孔隙率、孔隙水压、孔隙气压、重金属离子浓度、吸附浓度、土体骨架位移为基本未知量,较全面反映了非饱和土体中热质迁移规律及变形特点;最后,开展非饱和黄土中铅离子迁移土柱试验,验证理论模型的可靠性,并分析了各因素对铅离子迁移规律的影响。结果表明:Langmuir非线性吸附模型比较符合黄土颗粒对铅离子的吸附特征,最大吸附量随温度升高而降低,温度梯度对非饱和黄土中污染物迁移有较明显促进作用;不计土体湿陷效应时,温度梯度及吸湿膨胀使土柱产生拉伸变形,重力、孔隙水压及孔隙气压共同作用使土柱产生压缩变形,后者影响大于前者,故土柱整体为压缩变形;污染物迁移随时间增长而减弱,吸附作用是长期过程,时间增长对其影响不显著。
    Abstract: Based on the theory of porous media and the continuum thermoelasticity, the migration mechanism of heavy metal ions in unsaturated soils under temperature gradient is studied. Firstly, the adsorption model for the lead ion by soil particles is determined through the non-isothermal adsorption tests. Secondly, based on the mass conservation, energy conservation and momentum conservation equations for various components in the three-phase system of solid, liquid and gas, a multi-physical field coupling mathematical model characterizing the migration of pollutants in unsaturated soils under temperature gradient is established. The model takes into account the adsorption effects of heavy metal ions, the migration of pore fluid, the compressibility of phase change soil skeleton and pore fluid phase and the deformation of soils regarding the temperature, porosity, pore water pressure, pore gas pressure, heavy metal ion concentration, adsorption concentration and soil skeleton displacement as the basic unknowns, which comprehensively reflect the characteristics of heat and mass migration and deformation in unsaturated soils. Finally, a soil column test on the migration of lead ions in unsaturated loess is carried out to verify the effectiveness of the theoretical model and the numerical results, and the influences of various factors on the migration laws of lead ions are analyzed. The results show that the Langmuir nonlinear adsorption model is more consistent with the adsorption characteristics of unsaturated loess for lead ions, and the maximum adsorption capacity decreases with the increase of temperature. The temperature gradient can obviously promote the migration of pollutants in unsaturated loess. While the pollutants migrate in unsaturated loess soil column, the whole soil column is in tensile deformation state. The migration of pollutants decreases with time. The adsorption is a long-term process, and the effects of time on it are not significant.
  • 图  1   Langmuir吸附模型拟合曲线

    Figure  1.   Fitting curves of Langmuir adsorption model

    图  2   土水特征曲线及试验装置

    Figure  2.   Soil-water characteristic curves and test device

    图  3   浓度、温度对比图

    Figure  3.   Comparison of concentration and temperature

    图  4   浓度对比图

    Figure  4.   Comparison of concentration

    图  5   孔隙水压、基质吸力、水蒸气压强及水蒸气密度变化曲线

    Figure  5.   Variation curves of pore water pressure, matrix suction, water vapor pressure and water vapor density

    图  6   各点位移、有效应力变化曲线

    Figure  6.   Variation curves of displacement and effective stress at each point

    图  7   高度方向浓度、吸附浓度变化曲线

    Figure  7.   Variation curves of concentration and adsorption concentration in height direction

    表  1   铅离子吸附试验数值

    Table  1   Test values of Pb ion adsorption

    温度/
    K
    初始浓度C0/(mg·L-1) 液相浓度C/(mg·L-1) 吸附Cs/(mg·kg-1)
    278 100 0.36 1244.51
    120 6.48 1619.98
    150 13.93 1741.25
    180 22.98 1915.12
    200 32.34 2021.25
    283 100 0.42 1216.86
    120 7.28 1548.64
    150 14.86 1646.25
    180 24.64 1865.46
    200 33.48 1986.46
    293 100 0.56 1186.88
    120 8.64 1508.24
    150 15.58 1604.25
    180 26.12 1768.56
    200 34.64 1868.36
    313 100 0.78 1108.46
    120 10.16 1428.62
    150 16.88 1516.26
    180 28.12 1648.36
    200 36.46 1726.54
    下载: 导出CSV

    表  2   吸附系数

    Table  2   Adsorption coefficients

    温度
    T/K
    非线性吸附常数
    α/(mg·L-1)
    最大吸附量β/
    (mg·g-1)
    278 0.55 2.32
    283 0.50 2.01
    293 0.56 1.82
    313 0.37 1.79
    下载: 导出CSV

    表  3   计算参数表

    Table  3   Parameters for calculation

    参数名称 取值 参数名称 取值
    土体试样高度H/m 0.3 土体密度ρs/(kg·m-3) 1560
    初始时刻污染物
    浓度C0/(kg·m-3)
    0.5
    污染物扩散
    系数D0/(m2·s-1)
    5×10-9
    土体试样半径r/m 0.1 土体纵向
    弥散度αL/m
    0.35
    n0 0.423 干燥气体摩尔
    质量Ma(kg·mol-1)
    2.88×10-2
    气体摩尔常数R/(J·mol·K-1) 8.214 孔隙度n0
    渗透率K0/(1/m2)
    1×10-16
    最大饱和度Ss 0.9 残余饱和度Sr 0.1
    吸湿膨胀系数βs 1.5×10-4 弹性模量Es/MPa 25
    泊松比μ 0.3 非线性吸附常数α/ (mg·L-1) 0.55
    最大吸附量β/(mg·g-1) 2.32 温度T0/K 278.15
    正反应速率
    常数λ1/(1·s-1)
    2.5×10-6 P0/Pa 0.9×105
    逆反应速率
    常数λ2/(1·s-1)
    1.5×10-6 βm/(1·K-1) -2.1×10-3
    土体弯曲因子τ 0.7 液态水质量热容Cw/
    (J·kg·K-1)
    4180
    空气质量热容Ca/
    (J·kg·K)
    1000 土体骨架质量热容Cp/ (J·kg·K-1) 1000
    水蒸气质量热容Cg/(J·kg·K) 1900 混合气相导热系数λg/ (W·m·K-1) 0.024
    液态水导热系数λl/(W·m·K-1) 0.56 土体骨架导热系数λs/ (W·m·K-1) 2.93
    液相水相变潜热Lwg/(J·kg-1) 2.4×106 水蒸汽摩尔质量Mw/
    (kg·mol-1)
    0.018
    热膨胀系数
    βsT/(1·K-1)
    7.8×10-6 液态水密度ρw/
    (kg·m-3)
    1000
    下载: 导出CSV

    表  4   边界条件

    Table  4   Boundary conditions

    初始条件 上边界条件 下边界条件
    孔隙率n 0.432 孔隙率n 孔隙率n
    孔隙水压Pl/kPa -190 孔隙水压Pl/kPa 孔隙水压
    Pl
    0
    孔隙气压Pg/kPa 102.1 孔隙气压Pg/kPa 102.1 孔隙气压
    Pg
    0
    位移u/
    m
    0 位移u/
    m
    位移u 0
    浓度C/
    (kg·m-3)
    0 浓度C/
    (kg·m-3)
    浓度C/
    (kg·m-3)
    0.5
    吸附浓度
    Cs/(kg·kg-1)
    0 吸附浓度
    Cs/(kg·kg-1)
    吸附浓度
    Cs/(kg·kg-1)
    温度
    T/K
    278.15 温度
    T/K
    278.15 温度
    T/K
    303.15
    下载: 导出CSV
  • [1] 罗春泳. 黏土的环境土工特性及垃圾填埋场衬垫性状研究[D]. 杭州: 浙江大学, 2004.

    LUO Chunyong. Study on Geoenvironmental Characteristics of Clay and the Behavior of Clay Liner in MSW Landfills[D]. Hangzhou: Zhejiang University, 2004. (in Chinese)

    [2] 蔡国庆, 赵成刚, 田辉. 高放废物地质处置库中非饱和缓冲层的热-水-力耦合数值模拟[J]. 岩土工程学报, 2013, 35(增刊1): 1-8. http://www.cgejournal.com/cn/article/id/15204

    CAI Guoqing, ZHAO Chenggang, TIAN Hui. Numerical simulation of coupled thermo-hydro- mechanical behavior for engineered barriers in high-level radioactive waste disposal[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 1-8. (in Chinese) http://www.cgejournal.com/cn/article/id/15204

    [3] 滕继东, 贺佐跃, 张升, 等. 非饱和土水气迁移与相变: 两类"锅盖效应"的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813-1821. doi: 10.11779/CJGE201610010

    TENG Jidong, HE Zuoyue, ZHANG Sheng, et al. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of "canopy effect"[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. (in Chinese) doi: 10.11779/CJGE201610010

    [4] 秦冰, 陈正汉, 方振东, 等. 基于混合物理论的非饱和土的热-水-力耦合分析模型Ⅰ[J]. 应用数学和力学, 2010, 31(12): 1476-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201012010.htm

    QIN Bing, CHEN Zhenghan, FANG Zhendong, et al. Analysis of coupled thermo-hydro- mechanical behavior of unsaturated soils based on theory of mixtures Ⅰ[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1476-1488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201012010.htm

    [5] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    [6] 郭志光. 多孔介质中的水-热作用效应及污染物迁移特征研究[D]. 北京: 北京交通大学, 2018.

    GUO Zhiguang. The Hydro-thermal Effect and Transport Characteristics of Contaminants in Porous Media[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)

    [7]

    ADALA M, BENNACER R, SAMMOUDA H, et al. Heat and mass transport in the unsaturated porous media: application to the soil dry drainage method[J]. Defect and Diffusion Forum, 2009, 283: 589-593.

    [8] 张嘉熙. 重金属污染物与悬浮颗粒耦合迁移过程及迁移距离研究[D]. 北京: 北京交通大学, 2019.

    ZHANG Jiaxi. Experimental Study on the Transport Process and Distance of Coupled Suspended Particles and Heavy Metal Ion[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)

    [9] 王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育出版社, 2008.

    WANG Hongtao. Dynamics of Fluid Flow and Contaminant Transport in Porous Media[M]. Beijing: Higher Education Press, 2008. (in Chinese)

    [10]

    HEITMAN J L, HORTON R, REN T, et al. A test of coupled soil heat and water transfer prediction under transient boundary temperatures[J]. Soil Science Society of America Journal, 2008, 72(5): 1197-1207. doi: 10.2136/sssaj2007.0234

    [11] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 21(1): 82-90. http://www.cgejournal.com/cn/article/id/10260

    CHEN Zhenghan. Deformation, strength, yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90. (in Chinese) http://www.cgejournal.com/cn/article/id/10260

    [12] 秦冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩土工程学报, 2012, 34(10): 1877-1886. http://www.cgejournal.com/cn/article/id/14878

    QIN Bing, CHEN Zhenghan, SUN Faxin, et al. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. (in Chinese) http://www.cgejournal.com/cn/article/id/14878

    [13] 周凤玺, 周立增, 王立业, 等. 温度梯度作用下非饱和盐渍土水盐迁移及变形特性研究[J]. 岩石力学与工程学报, 2020, 39(10): 2115-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010015.htm

    ZHOU Fengxi, ZHOU Lizeng, WANG Liye, et al. Study on water and salt migration and deformation properties of unsaturated saline soil under temperature gradient[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2115-2130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010015.htm

    [14]

    RUTQVIST J, BÖRGESSON L, CHIJIMATSU M, et al. Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(1): 105-127.

    [15] 陈宗芳. 吉林西部盐渍土冻结温度预测及水盐迁移规律研究[D]. 长春: 吉林大学, 2020.

    CHEN Zongfang. Study on Freezing Temperature Prediction and Water-Salt Migration of Saline Soil in Western Jilin[D]. Changchun: Jilin University, 2020. (in Chinese)

    [16] 陈星欣, 白冰, 蔡奇鹏. 考虑吸附-解吸效应的多孔介质中颗粒加速迁移问题解析解[J]. 岩土力学, 2015, 36(6): 1698-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506023.htm

    CHEN Xingxin, BAI Bing, CAI Qipeng. Analytical solutions for accelerated transport of particles in porous media with considering adsorption-desorption effect[J]. Rock and Soil Mechanics, 2015, 36(6): 1698-1706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506023.htm

    [17]

    TREMOSA J, GAILHANOU H, CHIABERGE C, et al. Effects of smectite dehydration and illitisation on overpressures in sedimentary basins: a coupled chemical and thermo-hydro-mechanical modelling approach[J]. Marine and Petroleum Geology, 2020, 111: 166-178.

    [18] 周凤玺, 高国耀. 非饱和土中热湿盐多场耦合过程分析[J]. 岩土工程学报, 2019, 41(5): 813-820. doi: 10.11779/CJGE2022S1010

    ZHOU Fengxi, GAO Guoyao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. (in Chinese) doi: 10.11779/CJGE2022S1010

  • 期刊类型引用(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术

    其他类型引用(47)

图(7)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 74
出版历程
  • 收稿日期:  2022-06-12
  • 网络出版日期:  2023-03-04
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回