• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于透明土石混合体的水力侵蚀特性研究

刘汉龙, 钟文涵, 仉文岗, 周航, 王鲁琦, 顾东明

刘汉龙, 钟文涵, 仉文岗, 周航, 王鲁琦, 顾东明. 基于透明土石混合体的水力侵蚀特性研究[J]. 岩土工程学报, 2023, 45(9): 1868-1877. DOI: 10.11779/CJGE20220714
引用本文: 刘汉龙, 钟文涵, 仉文岗, 周航, 王鲁琦, 顾东明. 基于透明土石混合体的水力侵蚀特性研究[J]. 岩土工程学报, 2023, 45(9): 1868-1877. DOI: 10.11779/CJGE20220714
LIU Hanlong, ZHONG Wenhan, ZHANG Wengang, ZHOU Hang, WANG Luqi, GU Dongming. Hydraulic erosion characteristics based on transparent soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1868-1877. DOI: 10.11779/CJGE20220714
Citation: LIU Hanlong, ZHONG Wenhan, ZHANG Wengang, ZHOU Hang, WANG Luqi, GU Dongming. Hydraulic erosion characteristics based on transparent soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1868-1877. DOI: 10.11779/CJGE20220714

基于透明土石混合体的水力侵蚀特性研究  English Version

详细信息
    作者简介:

    刘汉龙(1964—),男,教授,博士生导师,主要从事岩土工程方面的研究工作。E-mail: hliuhhu@163.com

    通讯作者:

    仉文岗, E-mail: zhangwg@cqu.edu.cn

  • 中图分类号: TU431

Hydraulic erosion characteristics based on transparent soil-rock mixture

  • 摘要: 土石混合体是一种力学性质极其不均匀的材料,其水力侵蚀过程往往也是复杂和难以预测的。现有的水力侵蚀试验往往难以观察土石混合体水力侵蚀过程的变化,而透明土石混合体是一种可以较好地还原真实土石混合体力学性质的相似材料。基于此,进行了透明土石混合体水力侵蚀模型试验。试验考虑了含石量、块石尺寸、固结压力3个内在因素及流量外在因素。对试验结果进行二维断面分析以及三维重构,结果表明:对于每个试样组,存在一个平均侵蚀速率及临界侵蚀流量,平均侵蚀速率越小、临界侵蚀流量越大表明试样抗侵蚀能力越强。试样的抗侵蚀能力随着含石量增大而先增大后减小,随着块石尺寸增大而先增大后减小,随着固结压力增大而增大。纯土试样在低流速冲刷下最终会趋于光滑、平缓的“S”型岸坡,而在高流速冲刷下会在前端形成较陡的坡,而后端土体几乎被冲走;土石混合体通常在水力侵蚀下呈块状剥离,最终形成表面粗糙的倒梯形岸坡。
    Abstract: The soil-rock mixture is a material with extremely uneven mechanical properties, and the hydraulic erosion process of soil-rock mixture is often complex and difficult to predict. The existing hydraulic erosion tests often have difficulties in the observing changes in the hydraulic erosion process of soil-rock mixtures. While the transparent soil-rock mixture is a kind of similar material which is of sufficient similarity to the real one. Based on the transparent soil-rock mixture, the hydraulic erosion tests are carried out considering the internal factors including rock content, block size and consolidation pressure as well as the external factor of flow capacity. The two-dimensional section analysis and the three-dimensional reconstruction of the test results show that there is an average erosion rate and the critical erosion flow for each sample group. The smaller the average erosion rate and the greater the critical erosion flow, the stronger the erosion resistance of the samples. The erosion resistance of the samples first increases and then decreases with increase of the rock content, first increases and then decreases with increase of the block size, and increases with the consolidation pressure. The pure soil samples will eventually tend to a smooth and gentle "S" bank slope under the scouring of low velocity, while a steep slope will be formed at the front end under the scouring of high velocity, and the soil at the back end will be almost washed away. The soil-rock mixture is usually peeled off in chunks under hydraulic erosion, eventually forming an inverted trapezoidal shore slope with a rough surface.
  • 图  1   水力侵蚀装置

    Figure  1.   Hydraulic erosion device

    图  2   试样制备与安装

    Figure  2.   Preparation and installation of samples

    图  3   不同形态侵蚀曲线的侵蚀速率计算区间

    Figure  3.   Calculation interval of erosion rate of different erosion curves

    图  4   不同含石量下平均侵蚀速率与冲刷流量的关系

    Figure  4.   Relationship between average erosion rate and scouring flow with different rock contents

    图  5   不同含石量试样变化图

    Figure  5.   Demonstration of sample change with different rock content

    图  6   不同含石量下的侵蚀曲线

    Figure  6.   Erosion curves with different rock contents

    图  7   不同块石粒径试样平均侵蚀速率与冲刷流量的关系

    Figure  7.   Relationship between average erosion rates and scouring flow with different rock particle size

    图  8   不同粒径组试样变化图

    Figure  8.   Demonstration of sample change with different particle size group

    图  9   不同固结压力下平均侵蚀速率与冲刷流量的关系

    Figure  9.   Relationship between average erosion rates and scouring flow under different consolidation stresses

    图  10   不同固结压力下试样变化图

    Figure  10.   Demonstration of sample change under different consolidation stresses

    图  11   Q=30 m3/h时纯土三维模型

    Figure  11.   3D model for soil at Q=30 m3/h

    图  12   Q=50 m3/h时纯土三维模型

    Figure  12.   3D model for soil at Q=50 m3/h

    图  13   Q=35 m3/h时50%含石量土石混合体三维模型

    Figure  13.   3D model for soil-rock mixture with rock content of 50% at Q=35 m3/h

    图  14   Q=55 m3/h时50%含石量土石混合体三维模型

    Figure  14.   3D model for soil-rock mixture with rock content of 50% at Q=55 m3/h

    图  15   冲刷终态形心分布

    Figure  15.   Centroid distribution of final erosion state

    表  1   透明土石混合体水力侵蚀试验方案

    Table  1   Hydraulic erosion test schemes of transparent soil-rock mixture

    组别 固结压力/kPa 含土量/% 含石量/
    %
    块石粒径
    1A 2.90 100 0 13~15 mm
    1B 2.90 75 25
    1C 2.90 50 50
    1D 2.90 25 75
    2A 2.90 50 50 11~13 mm
    2B 2.90 50 50 15~20 mm
    2C 2.90 50 50 20~25 mm
    2D 2.90 50 50 11~13 mm,13~15 mm粒径组含量各为8.3%;15~20 mm,20~25 mm粒径组含量各为16.6%
    3A 1.45 50 50 13~15 mm
    3B 4.35 50 50
    3C 5.80 50 50
    下载: 导出CSV
  • [1] 张乐涛, 高照良, 田红卫. 工程堆积体陡坡坡面土壤侵蚀水动力学过程[J]. 农业工程学报, 2013, 29(24): 94-102. doi: 10.3969/j.issn.1002-6819.2013.24.013

    ZHANG Letao, GAO Zhaoliang, TIAN Hongwei. Hydrodynamic process of soil erosion in steep slope of engineering accumulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 94-102. (in Chinese) doi: 10.3969/j.issn.1002-6819.2013.24.013

    [2] 李宏伟. 黄土区工程堆积体水蚀特征及土质可蚀性K因子研究[D]. 杨凌: 西北农林科技大学, 2013.

    LI Hongwei. Experimental Study on Characteristic of Water Erosion and Soil Erodibility for Engineering Accumulation in Loess Area[D]. Yangling: Northwest A & F University, 2013. (in Chinese)

    [3] 叶芳, 刘焕芳, 程勇, 等. 清水冲刷山溪性卵石河流河床粗化室内试验研究[J]. 排灌机械工程学报, 2022, 40(3): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202203008.htm

    YE Fang, LIU Huanfang, CHENG Yong, et al. Laboratory experimental study on roughening of riverbed of mountain-stream pebble rivers scoured by clear water[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(3): 264-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202203008.htm

    [4] 王力, 陈玙珊, 占清华, 等. 薄层水流冲刷条件下斜坡土体的临界起动[J]. 土木与环境工程学报(中英文), 2022: 1-11.

    WANG Li, CHEN Yu-shan, ZHAN Qing-hua, et al. Critical start-up of slope soil mass under thin layer flow scouring[J]. Journal of Civil and Environmental Engineering (Chinese and English), 2022: 1-11. (in Chinese)

    [5] 高晓静, 王秋生, 李勇, 等. 重塑粗粒土-黏性土混合物冲刷特性研究[J]. 水利学报, 2021, 52(3): 323-332. doi: 10.13243/j.cnki.slxb.20200303

    GAO Xiaojing, WANG Qiusheng, LI Yong, et al. Study on the erodibility of reconstituted cohesive and non-cohesive soil mixtures[J]. Journal of Hydraulic Engineering, 2021, 52(3): 323-332. (in Chinese) doi: 10.13243/j.cnki.slxb.20200303

    [6]

    ISKANDER M, SADEK S. Transparent silica gel to model sand[J]. Int J of Physical Modelin Geomechanics, 2002, 2(4): 13-26.

    [7]

    ISKANDER M G, LIU J Y, SADEK S. Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 262-273. doi: 10.1061/(ASCE)1090-0241(2002)128:3(262)

    [8]

    ZHONG W H, LIU H L, GU D M, et al. Development of a preparation method of transparent soil-rock mixture for geotechnical laboratory modeling[J]. Engineering Geology, 2022, 301: 106622. doi: 10.1016/j.enggeo.2022.106622

    [9] 孔纲强, 刘璐, 刘汉龙, 等. 玻璃砂透明土变形特性三轴试验研究[J]. 岩土工程学报, 2013, 35(6): 1140-1146. http://www.cgejournal.com/cn/article/id/15077

    KONG Gangqiang, LIU Lu, LIU Hanlong, et al. Triaxial tests on deformation characteristics of transparent glass sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese) http://www.cgejournal.com/cn/article/id/15077

    [10] 宫全美, 周俊宏, 周顺华, 等. 透明土强度特性及模拟黏性土的可行性试验[J]. 同济大学学报(自然科学版), 2016, 44(6): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201606006.htm

    GONG Quanmei, ZHOU Junhong, ZHOU Shunhua, et al. Strength property and feasibility test of transparent soil to model clayey soil[J]. Journal of Tongji University (Natural Science), 2016, 44(6): 853-860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201606006.htm

    [11]

    XIANG Y Z, LIU H L, ZHANG W G, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism[J]. Tunnelling and Underground Space Technology, 2018, 74: 178-184. doi: 10.1016/j.tust.2018.01.020

    [12] 周东, 刘汉龙, 仉文岗, 等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

    ZHOU Dong, LIU Hanlong, ZHANG Wengang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

    [13]

    BRIAUD J L, TING F C K, CHEN H C, et al. Erosion function apparatus for scour rate predictions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(2): 105-113.

    [14] 邓合玉. 饱和黏性土的抗冲刷特性试验研究[J]. 公路, 2021, 66(11): 311-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202111057.htm

    DENG Heyu. Experimental study on anti-scouring characteristics of saturated cohesive soil[J] Highway, 2021, 66 (11): 311-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202111057.htm

    [15] 王瑄, 李占斌, 尚佰晓, 等. 坡面土壤剥蚀率与水蚀因子关系室内模拟试验[J]. 农业工程学报, 2008, 24(9): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200809007.htm

    WANG Xuan, LI Zhanbin, SHANG Baixiao, et al. Indoor simulation experiment of the relationship between soil detachment rate and water erosion factor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(9): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200809007.htm

    [16]

    RIEKE-ZAPP D, POESEN J, NEARING M A. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion[J]. Earth Surface Processes and Landforms, 2007, 32(7): 1063-1076.

    [17] 徐文杰, 胡瑞林, 岳中琦, 等. 土石混合体细观结构及力学特性数值模拟研究[J]. 岩石力学与工程学报, 2007, 26(2): 300-311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200702010.htm

    XU Wenjie, HU Ruilin, YUE Zhongqi, et al. Mesostructural character and numerical simulation of mechanical properties of soil-rock mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 300-311. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200702010.htm

    [18] 李艳梅, 胡兵辉, 陈平平. 云南省高速公路弃渣场土壤流失特征研究——以昆明—石林高速公路为例[J]. 中国水土保持, 2011(2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB201102029.htm

    LI Yanmei, HU Binghui, CHEN Pingping. Study on soil loss characteristics of expressway spoil ground in Yunnan Province-Taking Kunming-Shilin expressway as an example[J]. China Soil and Water Conservation, 2011(2): 62-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB201102029.htm

    [19] 李夷荔, 林文莲. 论工程侵蚀特点及其防治对策[J]. 福建水土保持, 2001, 13(3): 27-31, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSB200103006.htm

    LI Yili, LIN Wenlian. Discussion on the characteristics of engineering erosion & its prevention countermeasures[J]. Fujian Soil and Water Conservation, 2001, 13(3): 27-31, 40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJSB200103006.htm

    [20] 李建明, 牛俊, 王文龙, 等. 不同土质工程堆积体径流产沙差异[J]. 农业工程学报, 2016, 32(14): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201614025.htm

    LI Jianming, NIU Jun, WANG Wenlong, et al. Differences in characteristics of runoff and sediment yielding from engineering accumulations with different soil textures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 187-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201614025.htm

图(15)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回