• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

膨胀土滑坡与工程边坡新型防治技术与工程示范研究

叶为民, 孔令伟, 胡瑞林, 查甫生, 石胜伟, 刘樟荣

叶为民, 孔令伟, 胡瑞林, 查甫生, 石胜伟, 刘樟荣. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
引用本文: 叶为民, 孔令伟, 胡瑞林, 查甫生, 石胜伟, 刘樟荣. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
YE Wei-min, KONG Ling-wei, HU Rui-lin, ZHA Fu-sheng, SHI Sheng-wei, LIU Zhang-rong. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009
Citation: YE Wei-min, KONG Ling-wei, HU Rui-lin, ZHA Fu-sheng, SHI Sheng-wei, LIU Zhang-rong. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. DOI: 10.11779/CJGE202207009

膨胀土滑坡与工程边坡新型防治技术与工程示范研究  English Version

基金项目: 

国家重点研发计划项目 2019YFC1509900

详细信息
    作者简介:

    叶为民(1963—),男,工学博士,同济大学特聘教授,博士生导师,地质工程上海市重点学科带头人,宝钢优秀教师。兼任国际工程地质与环境协会废物处置专业委员会(C36)主席。长期从事环境地质、非饱和土工程地质与膨胀性特殊土研究。主持国家自然基金项目8项(含重点基金项目2项、重大仪器项目1项),国家重点研发计划项目1项,国家“863”课题1项,“973”项目子课题1项,国防科工局(委)“十二五”、”“十三五”计划项目各1项等省部级以上项目40余项;发表论文300余篇,其中SCI核心合集论文170余篇,被SCI引用2900余次,H指数30;获教育部自然科学一等奖(排名1)等省部级奖6项。主(参)编著作(教材)12部(本);主(参)编国家、行业和团体标准3部。入选“全球前2%顶尖科学家榜单”和“2020爱思唯尔‘中国高被引学者’榜单”。主持国家双语示范课程、上海市全英语示范课程各一门,指导上海市优秀博士论文2篇,获国家级教学成果二等奖1项,上海市特等、一等和二等奖各1项。兼任2006—2010、2013—2017和2018—2022年教育部高等学校教学指导委员会委员。E-mail: ye_tju@tongji.edu.cn

    通讯作者:

    刘樟荣,E-mail: liuzr@tongji.edu.cn

  • 中图分类号: TU41

New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils

  • 摘要: 中国膨胀土分布十分广泛且与人类活动密集区高度重叠。由于其胀缩性、裂隙性与超固结性(“三性”)特征,膨胀土极易受气候变化和工程活动影响而诱发滑坡灾害。然而,传统的防治技术无法适应具有“三性”特征的膨胀土滑坡与工程边坡治理要求,导致滑坡屡治不止,成为工程“癌症”。“十三五”国家重点研发计划项目“膨胀土滑坡与工程边坡新型防治技术与工程示范研究”紧扣膨胀土的“三性”及其互馈作用,揭示了膨胀土滑坡和工程边坡的失稳机理与关键致灾因子,突破了膨胀土边坡多场信息监测与滑坡灾害早期预警技术,研发了“表-浅-深”一体化的膨胀土边坡韧性生态防护技术,形成了膨胀土边坡防护工程健康诊断方法与快速修复技术,初步集成了膨胀土边坡生态防护综合技术体系并实施工程示范三处。项目研究成果为膨胀土滑坡与工程边坡防治提供了新理论、新技术和新工法,社会、经济和环境效益显著,应用前景广阔。
    Abstract: Expansive soils are widely distributed in China, especially in the regions with high population density. Characterized by the well-known 'three properties', i.e., swelling-shrinkage, cracking and over-consolidation, the expansive soils are highly susceptible to climate change and engineering activities, and thus can easily cause landslides. Due to the lack of consideration to the interactive 'three properties' of the expansive soils, the traditional techniques can hardly be effective for the treatment of expansive soil landslides and engineering slopes, leaving the latter known as 'cancer' that imperils the safety of engineering projects. During the 13th Five-Year Plan period, the National Key Research and Development Program of China "New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils" was approved. With special attention to the interactive 'three properties' of the expansive soils, the program has made series of innovations including the instability mechanism and the key disaster factors of expansive soil landslides, multi-field information monitoring and early warning techniques, 'surface-shallow-deep' integrated and ecological reinforcement technique, health diagnosis and rapid restoration techniques for slope protection structures. These techniques are integrated as a technical system and have been implemented in three engineering demonstrations. The relevant achievements have provided new theories, techniques and construction methods for treating the landslides and engineering slopes of the expansive soils. Meanwhile, they have achieved significant social, economic and environmental benefits, with broad application prospects.
  • 中国沿海地区分布着广泛的黏性土,其工程性质与土颗粒的形状、大小和级配等有着密切的关系[1]。根据前人的研究[2-4],颗粒的形状特征主要表现在3个方面:①颗粒的伸长属性,反映颗粒整体上接近柱形、长条形、方形等特征;②颗粒的边界数目和形态,反映颗粒在几何特征上的边数、边边关系等;③边界曲线特征,反映颗粒间的咬合能力和空间填充能力。目前大部分的研究[5-7]主要集中在分析土颗粒和孔隙的空间分布或非黏性土的形状参数上,对黏性土的形状分析尚不多。

    本文通过选取天津港地区的典型黏性土,采用数字图像技术,开展颗粒形状分析试验,对土颗粒的面积、周长、直径、长径比、圆形度、分形维数等参数进行统计分析,为黏性土的微观分析积累经验,也为黏性土的宏观力学特性研究和地基加固技术提供参考。

    颗粒形状参数的定义目前尚无统一标准,在工程中,人们通常用球状、多角状、纤维状、粒状、针片状、粒状、不规则状等术语进行描述[8],但这种描述基本都是定性的,难以进行定量分析。因此,本文通过综合分析以往颗粒形状分析的研究成果,特定义以下几个形状参数,以便提取颗粒的形状信息进行定量描述。

    长径比为颗粒投影的最大直径和最小直径之比,

    α=LB, (1)

    式中,α为长径比,L为颗粒投影的最大直径,B为颗粒投影的最小直径。

    长径比可以反映颗粒的伸长属性,即颗粒整体上接近圆形、长条形、方形的程度。长径比可以粗略的描述颗粒的形状,在以往的研究中得到大量的应用,一般颗粒越接近方形或圆形,其值越接近于1,颗粒越狭长,其值越大。

    圆形度为颗粒投影的等效面积圆周长与颗粒投影的实际周长之比,

    θ=2πAP, (2)

    式中,θ为圆形度,A为颗粒等效面积,P为颗粒投影的边界轮廓周长。

    圆形度可以整体上描述颗粒的形貌特征,一般颗粒越接近标准圆形,其值越接近于1,颗粒越偏离圆形或者边界轮廓起伏越大(包含突出棱角),其值越小。

    分形理论[9]是用来描述自然界中不规则图形和混乱现象的强有力的数学工具,自引入岩土工程领域后,取得了一系列的研究成果[10-13]。在颗粒的形状分析方面,分形理论被认为是可以定量描述颗粒轮廓复杂程度的重要方法,其分形维数表示颗粒轮廓线的不平整程度或粗糙度,分形维数越大,颗粒表面越粗糙。目前常用的获取分形维数的方法主要分为两种:固定尺码法和变尺码法。其中固定尺码法又分为周长—最大直径法、周长—面积法、计盒法等。本文采用周长—面积法获取颗粒表面粗糙度的分形维数。对于形状不规则的几何图形,根据分形理论,其周长和面积存在如下关系:

    c=P1/DRA1/2, (3)

    式中,c为常数,A为颗粒等效面积,P为颗粒投影的边界轮廓周长,DR为分形维数。

    对式(3)两边取对数可得

    DR=2k, (4)

    式中,k为直线lgllgA的斜率。

    试验用的3种土样按照通常的土样分类标准,可大致分为黏土、粉质黏土、粉土3类,其具体的物理性质指标如表1所示。3种土样的颗粒级配如表2所示。

    表  1  试验土样的物理性质指标
    Table  1.  Physical properties of test soil samples
    土样含水率/%湿密度/(g·cm-3)液限/%塑限/%塑性指数
    黏土43.11.7746.722.124.6
    粉质黏土34.91.8435.118.816.3
    粉土25.01.9520.214.55.7
    下载: 导出CSV 
    | 显示表格
    表  2  试验土样的颗粒级配
    Table  2.  Grain-size distribution of test soil samples
    土样粒径级/mm
    <0.002<0.0050.005~0.075>0.075
    黏土18.9146.1445.578.29
    粉质黏土8.1019.3466.1514.51
    粉土3.055.5766.6427.79
    下载: 导出CSV 
    | 显示表格

    试验采用国内某公司生产的激光图像粒度粒形分析仪,其设备主要由自动循环分散系统、Led 光源、光学显微镜、CCD摄像机、计算机采集系统组成,可对颗粒边缘进行自动识别并强化,操作方便、重复性较好。

    试验时,以纯净水为介质,并加入4%浓度的六偏磷酸钠做为分散剂,将土样加水稀释成泥浆,开启超声波分散系统,然后通过循环系统使得土颗粒形成稳定的颗粒流;当土颗粒通过观测窗口时,Led光束照射土颗粒上,通过光学显微镜将待测的微小颗粒放大,并成像在CCD像机的光敏面上,CCD像机将光学信号转换为数字信号并传递给计算机系统;计算机收到数字化的显微图像信号后,将图像进行增强处理,然后转化成黑白色的二值化图像,并提取颗粒的边界轮廓特征;最后,通过系统计算软件,计算出颗粒轮廓投影的周长(像素数)、面积(像素数)、长轴短轴(像素数),并根据仪器的放大倍数计算出颗粒的周长、面积、长径、短径、长径比、圆形度、等效直径等参数。

    图1给出了土颗粒的长径比分布,从图中可以看出,天津港地区的典型黏性土由于沉积环境和颗粒组成比较复杂,其颗粒长径比分布跨度比较大,从1到7都有分布,但长径比主要集中在1~2,并且随着土样中细颗粒含量的增加,其长径比更趋向于集中到1~2,这表现为黏土长径比在1~2区间的颗粒所占比例最大,粉质黏土次之,粉土最小。进一步分析,黏土、粉质黏土、粉土的平均长径比分别为1.56,1.58,1.65,这说明随着土样中细颗粒含量的增加,土颗粒整体的长径比逐渐降低,细长形的颗粒逐渐减小,土颗粒越趋向于规则状。

    图  1  土颗粒长径比分布图
    Figure  1.  Distribution of long-short diameter ratio of soil particles

    图2给出了土颗粒的圆形度分布,从图中可以看出,各土样的圆形度分布范围为0.4~1.0,主要集中在0.9~1.0,并且随着土样中细颗粒的增加,圆形度更集中于0.9~1.0。进一步分析,黏土、粉质黏土、粉土的平均圆形度分别为0.91,0.89,0.88,这说明颗粒越细,土样的整体圆形度越大,土颗粒的形状越趋向于圆形。

    图  2  土颗粒圆形度分布图
    Figure  2.  Distribution of roundness of soil particles

    根据颗粒表面粗糙度分形理论,图3给出了各土样颗粒的周长与面积对数关系,表3进一步给出了各土样粗糙度分形维数统计。从图表中可以看出,天津港地区的典型黏性土具有比较好的分形特性,黏土、粉质黏土、粉土的颗粒表面粗糙度分形维数分别为0.9590,0.9574,0.9654,这说明土颗粒越细,其表面起伏越小,即表面越光滑,颗粒形状越接近于圆形。同时,黏土、粉质黏土、粉土的周长与面积对数关系的相关系数分别为0.9176,0.8912,0.8660,这说明颗粒越细,其相关关系越明显,颗粒的分形特性表现的也越明显。需要指出的是本文采用周长-面积法所得到的颗粒表面粗糙度分形维数仅具有统计学意义上的分形维数,反映的是颗粒之间的统计自相似性,不同于颗粒自身的严格意义上的自相似性。

    图  3  土颗粒的周长与面积对数关系
    Figure  3.  Logarithmic relationship between perimeter and area of soil particles
    表  3  土颗粒表面粗糙度分形维数
    Table  3.  Fractal dimensions of surface roughness of soil particles
    土样类别斜率k分形维数DR相关系数R2
    黏土0.47950.95900.9176
    粉质黏土0.47870.95740.8912
    粉土0.48270.96540.8660
    下载: 导出CSV 
    | 显示表格

    本文采用数字图像技术对我国天津港地区的典型黏性土开展了颗粒形状分析试验,并对土样的长径比、圆形度、粗糙度分形维数进行了统计分析,主要得到以下结论。

    (1)天津港土样的长径比主要集中到1~2,其中黏土、粉质黏土、粉土的平均长径比分别为1.56,1.58,1.65,这说明随着土样中细颗粒含量的增加,土颗粒整体的长径比逐渐降低,细长形的颗粒逐渐减小,土颗粒越趋向于规则状。

    (2)土样的圆形度主要集中在0.9~1.0,其中黏土、粉质黏土、粉土的平均圆形度分别为0.91,0.89,0.88,这说明颗粒越细,土样的整体圆形度越大,土颗粒的形状越趋向于圆形。

    (3)土样具有较好的粗糙度分形特性,并且颗粒越细,这种分形特性表现的越明显,其中黏土、粉质黏土、粉土的颗粒表面粗糙度分形维数分别为0.9590,0.9574,0.9654,这说明土颗粒越细,其表面起伏越小,表面越光滑。

    致谢: 本文采用了项目骨干柏巍、顾凯、唐朝生、刘尊言、许龙、康博、王琼、苏薇、李志清、张冬梅、蔡强、贺伟明及其团队的部分研究成果,一并表示感谢。感谢参加本项目的有关单位和科研人员的辛勤付出!
  • 图  1   课题间逻辑关系

    Figure  1.   Relationship among tasks

    图  2   中国膨胀(岩)土边坡灾害点分布(473处)

    Figure  2.   Expansive soils-related disasters in China (473 cases)

    图  3   不同区域膨胀土边坡灾害类型与关键致灾因子

    Figure  3.   Types and causes of expansive soils-related disasters in different regions of China

    图  4   膨胀土原位力学特性

    Figure  4.   In-situ mechanical behaviors of expansive soils

    图  5   基于变权重模糊综合评判与层次分析法的膨胀土边坡动态安全评价软件

    Figure  5.   Software running with fuzzy-AHP-based variable weight safety evaluation model for safety of expansive soil slopes

    图  6   膨胀土裂隙快速捕获与智能识别技术

    Figure  6.   Fast-capture and intelligent-identification techniques for cracks of expansive soils

    图  7   基于分布式光纤测温系统的膨胀土水分监测技术

    Figure  7.   Distributed temperature sensor (DTS)-based moisture monitoring technique

    图  8   基于分布式光纤测温系统的膨胀土裂隙监测技术

    Figure  8.   Distributed fiber optic sensing (DFOS)-based crack monitoring technique

    图  9   降雨入渗作用下膨胀土变形与裂隙度演化特征

    Figure  9.   Temporal evolution of deformation and crack density of expansive soils subjected to rainfall

    图  10   膨胀土边坡“表-浅-深”一体化韧性生态防护技术

    Figure  10.   'Surface-shallow-deep' integrated and ecological reinforcement technology for expansive soil slopes

    图  11   钙基纳米二氧化硅改性膨胀土的水-力特性

    Figure  11.   Hydro-mechanical behaviors of expansive soils modified with Ca-SiO2 powder

    图  12   PSS和LSA治愈膨胀土裂隙示意图

    Figure  12.   Cracks curing using PSS and LSA

    图  13   防护工程健康状态诊断系统

    Figure  13.   Diagnostic system for health status of protection structures

    图  14   多段扩孔式锚杆

    Figure  14.   Multi-underreamed anchors (MUAs)

    图  15   排水工程聚合物改性水泥砂浆修复材料

    Figure  15.   Polymer-modified cement mortar for ditch repairment

    图  16   瓦东干渠刘岗电灌站#2滑坡(治理前)

    Figure  16.   Landslide No. 2 (before treatment) near Liugang electric irrigation station of Wadong main canal

    图  17   瓦东干渠刘岗电灌站#2滑坡治理方案

    Figure  17.   Design of landslide No. 2 near Liugang electric irrigation station of Wadong main canal

    图  18   瓦东干渠刘岗电灌站#2滑坡监测方案

    Figure  18.   Monitoring program of landslide No. 2 near Liugang electric irrigation station of Wadong main canal

    图  19   瓦东干渠刘岗电灌站#2滑坡(治理后)

    Figure  19.   Landslide No. 2 (after treatment) near Liugang electric irrigation station of Wadong main canal

    图  20   合六叶高速公路K707+900边坡防治方案

    Figure  20.   Design of K707+900 slope of Hefei-Lu'an-Yeji high-speed way

    图  21   合六叶高速公路K707+900边坡防治效果

    Figure  21.   K707+900 slope of Hefei-Lu'an-Yeji high-speed way before and after treatment

    表  1   课题设置

    Table  1   Arrangement of tasks

    课题序号 课题名称 牵头单位 课题负责人
    1 膨胀土滑坡与工程边坡水力作用失稳特征与安全性评价方法 中国科学院武汉岩土力学研究所 孔令伟
    2 膨胀土滑坡和工程边坡实时监测与早期预警技术 中国科学院地质与地球物理研究所 胡瑞林
    3 膨胀土滑坡和工程边坡防治工程新型材料与新型技术 合肥工业大学 查甫生
    4 膨胀土滑坡和工程边坡防护工程健康诊断和快速修复技术 中国地质科学院探矿工艺研究所 石胜伟
    5 膨胀土滑坡和工程边坡生态防护综合技术体系及应用示范 同济大学 叶为民
    下载: 导出CSV

    表  2   膨胀土边坡灾害类型

    Table  2   Disaster types of expansive soil slope

    区域 典型地区 灾害类型 代表性案例
    西南、华南 四川盆地、昆明盆地、南宁盆地、百色盆地 冲蚀、坍塌、滑坡 百东新区百贤路、广西南友高速公路
    东北、华北 延吉盆地、图晖盆地 剥落、胀裂、滑坡 吉林至珲春GDK275边坡
    中部 南襄盆地、江淮丘陵区 整体滑动、浅层滑动 南水北调、淠史杭灌区、引江济汉
    下载: 导出CSV
  • [1] 李生林. 中国膨胀土工程地质研究[M]. 南京: 江苏科学技术出版社, 1992.

    LI Sheng-lin. Studies on the engineering geology of expansive soils in China[M]. Nanjing: Phoenix Science Press, 1992. (in Chinese)

    [2]

    SHI B, JIANG H T, LIU Z B, et al. Engineering geological characteristics of expansive soils in China[J]. Engineering Geology, 2002, 67(1/2): 63–71.

    [3] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1–15. doi: 10.3321/j.issn:1000-4548.2004.01.001

    BAO Cheng-gang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1–15. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.001

    [4] 蔡正银, 陈皓, 黄英豪, 等. 考虑干湿循环作用的膨胀土渠道边坡破坏机理研究[J]. 岩土工程学报, 2019, 41(11): 1977–1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, et al. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977–1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    [5] 殷宗泽, 袁俊平. 膨胀土特性与边坡稳定[M]. 北京: 科学出版社, 2018.

    YIN Zong-ze, YUAN Jun-ping. Characteristics of Expansive Soil and Slope Stability[M]. Beijing: Science Press, 2018. (in Chinese)

    [6] 郑健龙, 杨和平. 公路膨胀土工程[M]. 北京: 人民交通出版社, 2009.

    ZHENG Jian-long, YANG He-ping. Expansive soil engineering in highway[M]. Beijing: China Communications Press, 2009. (in Chinese)

    [7]

    LIANG C, WU Z J, LIU X F, et al. Analysis of shallow landslide mechanism of expansive soil slope under rainfall: a case study[J]. Arabian Journal of Geosciences, 2021, 14(7): 1–11.

    [8] 杨果林, 陈子昂, 张红日, 等. 干湿循环作用下平缓型膨胀土边坡失稳破坏机制研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 95–103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201003.htm

    YANG Guo-lin, CHEN Zi-ang, ZHANG Hong-ri, et al. Collapse mechanism of gentle expansive soil slope in drying and wetting cycles[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 95–103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201003.htm

    [9]

    QI Y Z, WANG Z Z, XU H Q, et al. Instability analysis of a low-angle low-expansive soil slope under seasonal wet-dry cycles and river-level variations[J]. Advances in Civil Engineering, 2020, 2020: 3479575.

    [10] 王淳讙, 黄治峯, 赖世屏, 等. 边坡生命周期防灾监测信息整合及可视化云平台数据库建置研究[J]. 岩土工程学报, 2020, 42(1): 188–194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001029.htm

    WANG Chwen-huan, HUANG Chih-fong, LAI Shih-ping, et al. et al. Cloud database platform of integrated visualization for life-cycle prevention and safety monitoring of slope hazards[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 188–194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001029.htm

    [11] 杨济铭, 张红日, 陈林, 等. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析[J]. 中南大学学报(自然科学版), 2022, 53(1): 225–238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201025.htm

    YANG Ji-ming, ZHANG Hong-ri, CHEN Lin, et al. Analysis of crack morphology evolution law of expansive soil slope based on digital image correlation technology[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 225–238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201025.htm

    [12] 杨和平, 章高峰, 郑健龙, 等. 膨胀土填筑公路路堤的物理处治技术[J]. 岩土工程学报, 2009, 31(4): 491–500. doi: 10.3321/j.issn:1000-4548.2009.04.001

    YANG He-ping, ZHANG Gao-feng, ZHENG Jian-long, et al. Physical treating techniques of highway embankments filled with expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 491–500. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.04.001

    [13]

    XIE C R, NI P P, XU M J, et al. Combined measure of geometry optimization and vegetation for expansive soil slopes[J]. Computers and Geotechnics, 2020, 123: 103588. doi: 10.1016/j.compgeo.2020.103588

    [14] 谢彦初, 汪磊, 孙德安, 等. 基于组合赋权和聚类方法的膨胀土边坡防护工程健康诊断模型与应用[J]. 中南大学学报(自然科学版), 2022, 53(1): 258–268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201027.htm

    XIE Yan-chu, WANG Lei, SUN De-an, et al. Health diagnosis model with combination weight and clustering method for protection works of expansive soil slope and its application[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 258–268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201027.htm

    [15]

    LI T G, KONG L W, LIU B H. The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas[J]. Applied Sciences, 2020, 10(21): 7576. doi: 10.3390/app10217576

    [16] 李甜果, 孔令伟, 舒荣军. 不同含水率膨胀土动剪切模量特征与原位G-γ衰减曲线确定方法[J]. 振动与冲击, 2021, 40(23): 91–99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm

    LI Tian-guo, KONG Ling-wei, SHU Rong-jun. Dynamic shear modulus characteristics of expansive soil with different moisture contents and determination method of in situ G-γ decay curve[J]. Journal of Vibration and Shock, 2021, 40(23): 91–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm

    [17] 李甜果, 孔令伟, 王俊涛, 等. 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741–2754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110014.htm

    LI Tian-guo, KONG Ling-wei, WANG Jun-tao, et al. Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test[J]. Rock and Soil Mechanics, 2021, 42(10): 2741–2754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110014.htm

    [18]

    LI T G, KONG L W, GUO A G. The deformation and microstructure characteristics of expansive soil under freeze-thaw cycles with loads[J]. Cold Regions Science and Technology, 2021, 192: 103393. doi: 10.1016/j.coldregions.2021.103393

    [19]

    LU Y, GU K, ZHANG Y P, et al. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms[J]. Science of the Total Environment, 2021, 794: 148608. doi: 10.1016/j.scitotenv.2021.148608

    [20] 黎澄生, 孔令伟, 柏巍, 等. 吸湿路径SWCC曲线预测软件[简称: SWCCHys]1.0[CP]. 登记号: 2020SR1831946, 2020-12-16.

    LI Cheng-sheng, KONG Ling-wei, BAI Wei, et al. Prediction software of SWCC curve of hygroscopic path [Abbreviation: SWCCHys] 1.0[CP]. Registration number: 2020SR1831946, 2020-12-16. (in Chinese)

    [21] 黎澄生, 孔令伟, 柏巍, 等. CT数据分析软件[简称: CT Aya]1.0[CP]. 登记号: 2020SR1843548, 2020-12-17.

    LI Cheng-sheng, KONG Ling-wei, BAI Wei, et al. CT data analysis software [Abbreviation: CTAya]1.0[CP]. Registration number: 2020SR1843548, 2020-12-17. (in Chinese)

    [22]

    LUO X Q, KONG L W, BAI W. Application of environmental friendly modifier-super hydrophobic Nano-SiO2 in enhancing the stability of expansive soil [J]. Journal of Testing and Evaluation, 2022, in press.

    [23]

    LU J F, KONG L W, LIU X Y, et al. Multihazard risk model for reliability analysis of expansive soil landslide based on T–S fuzzy logic[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(2): 04022008. doi: 10.1061/AJRUA6.0001225

    [24] 叶为民. 膨胀土边坡动态模糊综合评价系统V1.0[CP]. 登记号: 2021SR1461127, 2021-7-15.

    YE Wei-min. Variable Fuzzy-AHP evaluation system for expansive soil slopes V1.0[CP]. Registration number: 2021SR1461127, 2021-7-15. (in Chinese)

    [25]

    CHENG Q, TANG C S, XU D, et al. Water infiltration in a cracked soil considering effect of drying-wetting cycles[J]. Journal of Hydrology, 2021, 593: 125640. doi: 10.1016/j.jhydrol.2020.125640

    [26]

    LI Z Q, KONG Y X, FU L, et al. Model test study on deformation characteristics of a fissured expansive soil slope subjected to loading and irrigation[J]. Applied Sciences, 2021, 11(22): 10891. doi: 10.3390/app112210891

    [27] 彭晟赟. 基于地质大数据的膨胀土裂隙分析[D]. 上海: 同济大学, 2020.

    PEN Sheng-yun. Expansion Soil Crack Analysis Based on Geological Big Data[D]. Shanghai: Tongji University, 2020. (in Chinese)

    [28] 潘伟健. 基于点云数据的膨胀土边坡裂隙模型研究[D]. 长春: 吉林大学, 2021.

    PAN Wei-jian. Research on Model for Describing Cracks on Expansive Soil Slope Using Point Cloud Data[D]. Changchun: Jilin University, 2021. (in Chinese)

    [29] 胡启成, 叶为民, 王琼, 等. 基于地质图像大数据的岩性识别研究[J]. 工程地质学报, 2020, 28(6): 1433–1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006030.htm

    HU Qi-cheng, YE Wei-min, WANG Qiong, et al. Recognition of lithology with big data of geological images[J]. Journal of Engineering Geology, 2020, 28(6): 1433–1440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006030.htm

    [30] 胡启成, 叶为民. 基于深度学习模型的岩性识别软件[简称: 岩性识别软件] 1.0[CP]. 登记号: 2021SR1139780, 2021-08-03.

    HU Qi-cheng, YE Wei-min. Deep Learning Model Based Lithology Recognition Software 1.0[CP]. Resgistration Number: 2021SR1139780, 2021-08-03. (in Chinese)

    [31]

    XU J J, ZHANG H, TANG C S, et al. Automatic soil desiccation crack recognition using deep learning[J]. Géotechnique, 2022, 72(4): 337–349. doi: 10.1680/jgeot.20.P.091

    [32]

    XU J J, ZHANG H, TANG C S, et al. Automatic soil crack recognition under uneven illumination condition with the application of artificial intelligence[J]. Engineering Geology, 2022, 296: 106495. doi: 10.1016/j.enggeo.2021.106495

    [33]

    CHENG Q, TANG C S, ZHU C, et al. Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fiber sensing technique[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 3959-3970. doi: 10.1007/s10064-020-01809-8

    [34] 张硕, 刘尊言, 任金象. 安全监测平台通用数据接口软件[简称: 通用数据接口软件]V1.0[CP]. 登记号: 2020SR1779665, 2020-12-10.

    ZHANG Shuo, LIU Zun-yan, REN Jin-xiang. Safety Monitoring Platform Application Programming Interface Software [Abbreviation: APIS] V1.0[CP]. Registration number: 2020SR1779665, 2020-12-10. (in Chinese)

    [35] 刘尊言, 夏顺盈, 张硕. 安全监测平台综合通信软件[简称: 综合通信软件]V1.0[CP]. 登记号: 2020SR1779662, 2020-12-10.

    LIU Zun-yan, XIA Shun-Ying, ZHANG Shuo. Safety Monitoring Platform Communication Software [Abbreviation: COMMS] V1.0[CP]. Registration number: 2020SR1779662, 2020-12-10. (in Chinese)

    [36] 查甫生, 陈宗涵, 许龙, 等. 基于毛细阻滞机理的导吸式膨胀土边坡浅层控水覆盖系统: CN111636443B[P]. 2021-12-07.

    ZHA Fu-sheng, CHEN Zong-han, XU Long, et al. Shallow Water Control Covering System Based on Capillary Barrier Methods for Expansive Soil Slopes: CN111636443B[P]. 2021-12-07. (in Chinese)

    [37] 查甫生, 胡盛涛, 孙献国, 等. 带毛细抽吸结构的膨胀土边坡浅-表层控水防护覆盖系统: CN112663630A[P]. 2021-04-16.

    ZHA Fu-sheng, HU Sheng-tao, SUN Xian-guo, et al. Shallow-Surface Water Control Covering System with Capillary Suction Conformation for Expansive Soil Slopes: CN112663630A[P]. 2021-04-16. (in Chinese)

    [38] 查甫生, 潘俊, 康博, 等. 一种柔性钙基材料改性包边修复膨胀土边坡的方法: CN112663590B[P]. 2021-11-23.

    ZHA Fu-sheng, PAN Jun, KANG Bo, et al. A Method for Repairing Expansive Soil Slope with Modified Edge Wrapping of Flexible Calcium Based Materials: CN112663590B[P]. 2021-11-23. (in Chinese)

    [39]

    TIAN Y F, LI Z Q, WANG S J, et al. Application of MICP in water stability and hydraulic erosion control of phosphogypsum material in slope[J]. Applied Sciences, 2022, 12(4): 1783. doi: 10.3390/app12041783

    [40] 李志清, 周应新, 侯建伟, 等. 一种使用磷石膏与微生物改良膨胀土路堤的设计施工方法: CN111424485B[P]. 2021-03-02.

    LI Zhi-qing, ZHOU Ying-xin, HOU Wei-jian, et al. Design and Construction Method for Expansive Soil Embankment Modified by Phosphogypsum and Microorganism: CN111424485B[P]. 2021-03-02. (in Chinese)

    [41] LI Z Q. Construction Method for Ecologically Protecting Expansive Soil Slope by Combining Phosphogypsum with Microbial Mineralization[P]. USA Patent. US10913894B1. 授权日: 2021-02-09. ((in Chinese)).
    [42] 王琼, 李丹, 叶为民, 等. 一种新型压密注浆土钉及其拉拔试验装置: CN111794293A[P]. 20201020.

    WANG Qiong, LI Dan, YE Wei-min, et al. A New Compaction Grouting Soil Nail and Its Pull-Out Test Device: CN111794293A[P]. 2020-10-20. (in Chinese)

    [43] 许辉, 王琼, 王楠, 等. 膨胀土裂隙图像数值化信息提取系统V1.0[CP]. 登记号: 2022SR0206121, 2021-11-30.

    XU Hui, WANG Qiong, WANG Nan, et al. Digital information extraction system of expansive soil crack image[CP]. Registration number: 2022SR0206121, 2021-11-30. (in Chinese)

    [44] 贺伟明, 石胜伟, 蔡强, 等. 考虑膨胀作用对抗剪强度影响的膨胀土边坡稳定性分析[J]. 岩石力学与工程学报. (录用待刊)

    HE Wei-ming, SHI Sheng-wei, CAI Qiang, et al. Stability analysis of expansive soil slope considering the influence of swelling on shear strength [J]. Chinese Journal of Rock Mechanics and Engineering. (in Chinese)

    [45] 张冬梅. 防护工程健康状态诊断系统软件1.0[CP]. 登记号: 2022SR0100998, 2022-01-08.

    ZHANG Dong-mei. Protection engineering health status diagnosis software 1.0[CP]. Registration number: 2022SR0100998, 2022-01-08. (in Chinese)

    [46]

    ZHOU Y T, SHI S W, CAI Q. A model test and the ultimate capacity analysis of multi-underreamed anchors in silty clay. [J]. Soil Mechanics and Foundation Engineering, 2022. (in press)

    [47] 杨栋, 石胜伟, 蔡强, 等. 一种膨胀土边坡防护的压力型氮气锚杆结构及适用方法: 中国专利, 202011516483.2[P]. 2021-12-07.

    YANG Dong, SHI Sheng-wei, CAI Qiang, et al. A Pressure Nitrogen Bolt Structure for Expansive Soil Slope Protection and Its Applicable Method: CN202011516483.2[P]. 2021-12-07. (in Chinese)

    [48] 贺伟明, 石胜伟, 蔡强, 等. 双掺氯乙烯-乙烯-乙烯醚乳液与橡胶颗粒改性水泥砂浆的性能研究[J]. 混凝土. (录用待刊)

    HE Wei-ming, SHI Sheng-wei, CAI Qiang, et al. Study on properties of cement mortar modified by vinyl chloride-ethylene-vinyl ether emulsion and rubber particles[J]. Concrete. (in press) (in Chinese)

  • 期刊类型引用(4)

    1. 王勋龙,许泽胜,焦小淼,王旭凡,仝江锦,王世奇,舒新前,李军. 煤矸石骨料分形维度与物相组分变化. 洁净煤技术. 2024(S2): 162-167 . 百度学术
    2. 刘新颖,金守峰,严楠. 面向分拣机器人的珍珠形状视觉检测方法. 计算机测量与控制. 2022(02): 79-83 . 百度学术
    3. 魏哲,王盼. 面向珍珠分拣机器人的形状视觉检测方法. 机械与电子. 2021(08): 68-71+76 . 百度学术
    4. 关振长,何亚军,高翔,邓涛. 花岗岩残积土中砾石颗粒的二维形状特征及其簇重构. 水利与建筑工程学报. 2021(04): 1-7 . 百度学术

    其他类型引用(9)

图(21)  /  表(2)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  62
  • PDF下载量:  194
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回