• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

堰塞湖风险评估快速检测与应急抢险技术和装备研发

蔡耀军, 周招, 杨兴国, 魏迎奇, 郑东健, 彭文祥, 钟启明, 王衡

蔡耀军, 周招, 杨兴国, 魏迎奇, 郑东健, 彭文祥, 钟启明, 王衡. 堰塞湖风险评估快速检测与应急抢险技术和装备研发[J]. 岩土工程学报, 2022, 44(7): 1266-1280. DOI: 10.11779/CJGE202207007
引用本文: 蔡耀军, 周招, 杨兴国, 魏迎奇, 郑东健, 彭文祥, 钟启明, 王衡. 堰塞湖风险评估快速检测与应急抢险技术和装备研发[J]. 岩土工程学报, 2022, 44(7): 1266-1280. DOI: 10.11779/CJGE202207007
CAI Yao-jun, ZHOU Zhao, YANG Xing-guo, WEI Ying-qi, ZHENG Dong-jian, PENG Wen-xiang, ZHONG Qi-ming, WANG Heng. Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1266-1280. DOI: 10.11779/CJGE202207007
Citation: CAI Yao-jun, ZHOU Zhao, YANG Xing-guo, WEI Ying-qi, ZHENG Dong-jian, PENG Wen-xiang, ZHONG Qi-ming, WANG Heng. Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1266-1280. DOI: 10.11779/CJGE202207007

堰塞湖风险评估快速检测与应急抢险技术和装备研发  English Version

基金项目: 

国家重点研发计划项目 2018YFC1508600

自主创新项目 BSH2021G03

自主创新项目 BSH2021G01

博士后科学基金项目 2022M710490

详细信息
    作者简介:

    蔡耀军(1963—),男,博士,正高级工程师,现任长江设计集团有限公司副总工程师,兼任水利部长江勘测技术研究所所长,中国水利学会勘测专业委员会常务副主任,湖北省地质学会副理事长。长期从事水利水电工程勘察、特殊岩土、地质灾害防治与抢险技术研究和应用,先后主持南水北调中线、丹江口大坝加高、汉江兴隆水利枢纽、湖南皂市水利枢纽、金沙江旭龙水电站、阳江中-低放废料地下岩洞处置等二十余项大中型工程勘察研究,主持完成十余项科研项目,是“十三五”国家重点研发计划项目“堰塞湖风险评估快速检测与应急抢险技术和装备研发”首席科学家,“十二五”国家科技支撑计划项目“南水北调中线工程膨胀土和高填方渠道建设关键技术研究与示范”及“十一五” “南水北调工程若干关键技术研究与应用”课题负责人,国家863计划“南水北调中线工程生态环境效应遥感监测技术”负责人。金沙江白格堰塞湖应急抢险国家防总专家组组长,西藏波密县冰湖险情处置水利部专家组组长。获国家及省部级科技奖15项;授权国家发明专利5项,实用新型专利14项;发表学术论文52篇,出版著作9部;主编国家、行业标准3部。先后获得全国水利系统先进青年科技工作者、全国水利水电勘测系统先进生产者、湖北省有突出贡献中青年专家、湖北省优秀留学回国人员等称号。E-mail:1761939361@qq.com

  • 中图分类号: TV62

Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes

  • 摘要: 中国西南高山峡谷地区极易因降雨或地震造成山体滑坡、泥石流堵塞天然河道形成堰塞湖,堰塞湖漫顶溃决极易形成超过历史最大天然洪水的溃决洪峰,严重威胁沿岸人民群众生命财产安全并破坏生态环境。鉴于当前堰塞湖风险处置技术水平尚难以满足堰塞湖高效应急处置需求,“十三五”国家重点研发计划项目“堰塞湖风险评估快速检测与应急抢险技术和装备研发”以“高效快速、科学减灾”为目标,通过3年联合攻关,在揭示堰塞湖形成及溃决机理、堰塞湖多源信息快速获取、堰塞湖险情监控预警、堰塞湖风险评估以及堰塞湖应急处置和抢险装备研发等方面取得一系列创新成果,为堰塞湖高效处置提供了理论方法和科学手段,社会和经济效益显著,具有广阔的应用前景。
    Abstract: Influenced by the severe rainfalls or earthquakes, landslides and debris flows are easy to occur in the mountainous and canyon areas of Southwest China, leading to blockage of rivers and formation of barrier lakes. Once overtopping breach occurs, the barrier lake is very easy to form a flood peak exceeding the largest natural flood in history, which severely threatens the lives and properties of the people along the river and destroys the ecological environment. During the 13th Five-Year Plan Period, the National Key Research and Development program "Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes" was Approved to solve the shortage problem of efficient emergency disposal technology of barrier lakes. After three years of joint researches, some innovations were made in the aspects of formation and breach mechanism, rapid acquisition of multi-source information, danger monitoring and early warning, risk evaluation, emergency disposal, emergency equipments of barrier lakes. The researches have provided a theoretical method and scientific means for the efficient disposal of barrier lakes with remarkable social and economic benefits and broad application prospects.
  • 随着城市建设的快速发展和建筑技术的不断进步,城市地下空间得到大规模开发和利用,超深超大基坑工程不断涌现。近年来,基坑开挖面积在10×104 m2以上,开挖深度达40 m以上的工程项目越来越多。例如,上海地铁4号线修复工程深基坑开挖深度接近41 m,上海世博地下变电站基坑开挖深度接近34 m,天津的高层建筑基坑最大平面尺寸已达548 m×187 m。同时,基坑工程中也出现了一些亟待解决的问题,坑底土体回弹问题就是其中之一[1-4]。基坑开挖产生坑底回弹,同时周边围护结构变形,也会要造成基底的隆起,回弹再压缩变形往往是建(构)筑物沉降变形的主要组成部分。

    已有学者对基坑回弹变形的特点及其对坑内桩基承载力的影响进行了研究。Iwasaki等[5]最早认为坑底土体竖向回弹会影响坑底桩基,认为土体回弹会对桩产生向上的侧摩阻力从而导致桩身上拔。对于基坑开挖与桩基的相互作用,Finno等[6]利用平面有限元对一基坑开挖引起临近桩基破坏的实例进行了分析。刘畅等[7]采用有限元数值模拟分析结合现场实测数据,研究了采用逆作法施工的基坑回弹变形问题,分析了工程桩、支护结构、楼板对坑底回弹变形的影响。查甫生等[8]通过有限元软件ABAQUS,以坑底无桩和坑底群桩两种基坑为研究对象,对比分析了有桩、无桩情况下,深基坑开挖卸载的变形特性,得出了工程桩可以使基坑周围沉降、基坑中心隆起、围护结构向坑内位移这几种变形明显减小。曹力桥[9]利用ABAQUS软件分析了存在工程桩和不存在工程桩基坑开挖和降水下的三维模型,通过对比分析了基坑开挖降水过程中基坑隆起的基本规律,得出工程降水对深基坑土体的压密作用及工程桩对坑底变形有明显的抑制作用。冯虎等[10]利用FLAC数值模拟软件研究了坑内工程桩对软土超深基坑抗隆起稳定的影响规律以及作用机理,结果表明,墙趾土层特性、地连墙插入深度、基坑宽度和潜在滑裂面之内的工程桩对基坑抗隆起稳定有着非常显著的影响。

    本文结合江苏某隧道明挖基坑工程,利用PLAXIS 3D软件,采用小应变土体硬化(HSS)模型作为土层的本构模型,建立了太湖隧道第二仓基坑的1/4模型,应用该模型,分析研究了坑底工程桩的桩长、桩径、桩刚度对基坑回弹变形的影响规律。

    江苏某湖底隧道工程,公路等级为双向六车道(全线紧急停车带)高速公路,设计速度100 km/h,隧道总长10709 m,净宽16.75 m,湖中最大开挖深度达15 m,建成断面示意图见图1

    图  1  隧道断面示意图
    Figure  1.  Schematic diagram of tunnel section

    本文研究的基坑地层分布较均匀,项目隧道工程场地主要为粉土及粉质黏土,局部夹软土层,设计采用明挖施工,主要采用放坡加垂直支护形式进行开挖,基坑工程规模大、施工时间长、施工工序和工艺流程复杂等特点,研究基坑开挖卸荷引起的坑底回弹变形是该项目长期变形控制的关键技术问题之一。

    现场监测由施工方进行,由于在施工过程中隆起测点遭到施工破坏,所以图2只给出了第二仓基坑孔隙水压力、立柱隆沉、桩土深层水平位移、围护结构水平位移及支撑轴力的测点图。

    图  2  第二仓基坑测点布置图
    Figure  2.  Survey point layout of the second warehouse foundation pit

    数值模拟标段选用第二仓K25+135—K25+515标段,基坑尺寸为400 m×80 m,开挖深度为15 m,为了便于数值计算,选取1/4的基坑进行建模,基坑三维模型及网格划分如图3所示。

    图  3  基坑三维模型及网格划分示意图
    Figure  3.  Three-dimensional model and grid drawing of foundation pit

    土层分层情况已进行适当简化,已在断面图4中标明。自上而下分别为:2-1粉质黏土,2-3粉土,2-4淤泥质粉质黏土,3-1粉质黏土,3-2粉质黏土,4-1b粉质黏土,4-1黏土,层底标高-90 m。

    图  4  基坑断面示意图
    Figure  4.  Schematic diagram of excavation section

    基坑开挖一般属于临时性工程,工期较短,所以按不排水条件进行分析,且不考虑开挖过程对土体扰动的影响;土体本构模型采用小应变硬化模型。通过标准固结试验获得土体参考切线模量Erefoed,通过三轴固结排水剪切试验获得土体参考割线模量Eref50、破坏比Rf和土体强度参数c′,φ′值,通过三轴固结排水加卸载剪切试验获得参考加卸载模量Erefur,具体试验过程与试验数据处理不再赘述。HSS模型参数取值见表1

    表  1  土层小应变本构模型参数取值表
    Table  1.  Parameter value table of soil layer HSS model
    土层Erefoed/MPaEref50/MPaErefur/MPaGref0/MPaγ0.7/10-4Rfc/kPaφ/(°)
    2-15.0673.2441.32112.02.00.705.037.5
    2-38.5924.0326.93100.02.00.624.732.2
    2-42.1907.3229.1158.12.00.907.229.0
    4-12.5667.0632.87115.82.00.8616.538.0
    下载: 导出CSV 
    | 显示表格

    基坑采用上部放坡与钻孔灌注桩结合的围护结构形式,如图4所示,围护结构及支撑均按弹性材料考虑,三维模型见图5

    图  5  支护体系模拟示意图
    Figure  5.  Schematic diagram of support system simulation

    (1)采用两道内支撑,第1道为钢筋混凝土支撑,间距为8 m,截面为800 mm×1000 mm,刚度为3×107 kPa,重度为25 kN/m3;第2道支撑为钢管支撑,间距为4 m,截面直径为609 mm,厚度为16 mm,刚度为2.1×108 kPa,重度为78.5 kN/m3

    (2)止水帷幕及连续墙采用板单元进行模拟,本文在计算时将连续墙的刚度按C30混凝土模量的80%取值,即为2.4×107 kPa,泊松比取为0.2。

    (3)被动加固区截面尺寸为5 m×5m,沿着基坑纵向满长布置,材料为水泥土,莫尔-库仑模型,刚度为1.5×105 kPa,泊松比为0.25,抗剪强度为750 kPa。

    (4)工程桩直径为600 mm,桩长为15 m,桩间距为8 m,桩的刚度为3×107 kPa,桩的重度为7 kN/m3

    对称侧面约束法向自由度及垂直于另外两个方向的转动自由度,非对称侧面仅约束法向自由度,底面约束所有自由度。

    数值模拟开挖方案采取在模型竖直方向上开挖一层土,施工一道撑的做法,工况描述见表2

    表  2  计算工况
    Table  2.  Calculation conditions
    施工阶段工况描述
    初始阶段平衡初始地应力
    1施工围护结构与工程桩
    2放坡开挖至-4 m,降水至-4 m
    3开挖至-5 m,降水至-5 m
    4施工第一道内支撑
    5开挖至-10 m,降水至-10 m
    6施工第二道内支撑
    7开挖至-15 m,降水至-16 m
    下载: 导出CSV 
    | 显示表格

    为保证有限元数值模拟计算结果的准确可靠,提取了基坑的砼支撑轴力监测数据与基坑围护墙水平位移数据,与PLAXIS模拟结果进行对比,结果见图6。可以看出钢支撑轴力模拟值的变化趋势与实测值的变化趋势一致,开挖至坑底时的误差为7.5%,可以看出钢支撑轴力曲线吻合度较高。

    图  6  钢支撑轴力对比图
    Figure  6.  Axial force contrast diagram of steel bracing

    研究工程桩桩长对基坑回弹变形的影响,保持工程桩桩径(d=0.6 m)、刚度(E=3×107 kPa)不变,分别取工程桩桩长为5,10,15,20,25 m以及无工程桩共6种条件。

    图7看出,无桩的回弹变形曲线与有桩的回弹变形曲线存在明显区别。无桩的回弹变形曲线呈现较为平滑的“凸”形,最大回弹变形量为33 mm,当桩即不施工工程桩时,基坑回弹增长较快,当距坑边约10 m,基坑回弹量不再增长,保持在约33 mm左右。

    图  7  桩长-回弹曲线图
    Figure  7.  Pile length - rebound curves

    当工程桩存在时,有桩的回弹变形曲线呈现波浪型,波谷处即为打桩的位置,此时,基坑回弹量增长较慢,在距坑边7 m左右就不再增长,最大值为27 mm左右;并且施工工程桩的位置,基坑回弹出现显著的减小。桩长每增加5 m,基坑中心回弹量减小约8%。

    研究工程桩桩径对基坑回弹变形的影响,保持工程桩桩长(L=25 m)、刚度(E=3×107 kPa)不变,分别取工程桩桩径为d=0.6 m,L=0.8 m,d=1.0 m,d=1.2 m,d=1.4 m以及无工程桩共6种条件。

    图8可以看出,各个桩径工况下,随着桩径的增加,基坑回弹变形量逐渐减小,工程桩桩径每增加0.2 m,基坑中心的回弹量减小4%。

    图  8  桩径-回弹曲线图
    Figure  8.  Pile diameter - rebound curve

    研究工程桩刚度对基坑回弹变形的影响,保持工程桩桩长(L=25 m)、桩径(d=0.6 m)不变,分别取工程桩刚度为E=2.5×107 kPa,E=3.0×107 kPa,E=3.5×107 kPa,E=3.8×107 kPa以及无工程桩5种工况。

    图9可以看出,改变工程桩桩刚度后,基坑回弹变形并未产生明显变化,结果表明,坑底工程桩的桩刚度对基坑回弹变形的影响最小。

    图  9  桩刚度-回弹曲线
    Figure  9.  Pile stiffness-rebound curves

    (1)基坑开挖初期,开挖深度较浅,基坑回弹变形为弹性变形,呈现四周小中间大的特点;随着开挖深度的增加,侧向卸荷逐渐增大,基坑内部土体产生塑性变形,基坑回弹变形呈现四周小中间大的特点。

    (2)由基坑回弹变形曲线可以看出,工程桩附近土体回弹量明显小于相邻土体,最终开挖完成时,有桩较无桩可以减小约20%的回弹变形。

    (3)结合基坑回弹变形曲线可以看出,桩长每增加5 m,基坑回弹变形减小约5%左右;桩径每增加0.2 m,基坑回弹变形减小约2%左右;工程桩桩身刚度的变化对基坑回弹变形的影响不是特别明显。

  • 图  1   白格堰塞湖淹没波罗乡

    Figure  1.   Boluo township flooded by Baige barrier lake

    图  2   项目技术路线

    Figure  2.   Technical route of program

    图  3   堰塞湖形成机理模拟

    Figure  3.   Simulation of formation mechanism of barrier lake

    图  4   参数模型预测结果

    Figure  4.   Predicted results by parametric model

    图  5   堰塞湖溃决发展过程

    Figure  5.   Breach development process of barrier lake

    图  6   不同结构形态堰塞体溃决洪水过程

    Figure  6.   Breach flood process with different forms of barrier body

    图  7   不同水流携砂量的溃决过程

    Figure  7.   Breach process with different sand carrying amounts

    图  8   堰塞体三维漫顶溃决数值分析模型

    Figure  8.   3D numerical analysis model for overtopping breach

    图  9   堰塞湖多源信息感知技术体系

    Figure  9.   Multi-source information perception technology system of barrier lakes

    图  10   多源空间数据结构快速转换

    Figure  10.   Fast conversion of multi-source spatial data structures

    图  11   堰塞湖不稳定地质体灾害识别技术流程

    Figure  11.   Technical process of identifying unstable geological body in barrier lakes

    图  12   计算机双目视觉边坡变形监测基本原理

    Figure  12.   Principle of slope deformation monitoring based on computer binocular vision

    图  13   堰塞体溃口应急监测

    Figure  13.   Emergency monitoring of barrier body breach

    图  14   堰塞体横向展宽及纵向下切实时监测

    Figure  14.   Real-time monitoring of breach broadening and undercutting

    图  15   溃决洪水演进与风险评估平台

    Figure  15.   Breach flood evolution and risk assessment platform

    图  16   堰塞湖应急抢险预案研究框架

    Figure  16.   Research framework of emergency plan for barrier lakes

    图  17   引流槽快速成槽技术

    Figure  17.   Rapid formation technology of flow-conducted trough

    图  18   堰塞湖库水位-溃决流量变化过程

    Figure  18.   Variation process of water level and breach flood of barrier lakes

    图  19   柔性防护措施

    Figure  19.   Flexible protective measures

    图  20   溃决洪水流量变化过程

    Figure  20.   Process of breach flood rate

    图  21   连续开挖输送一体化装备

    Figure  21.   Continuously excavating and conveying integrated equipments

    表  1   课题设置

    Table  1   Arrangement of tasks

    课题序号 课题名称 承担单位 课题负责人
    1 堰塞体形成与溃决机理及溃决过程研究 四川大学 杨兴国
    2 堰塞湖多源信息快速感知与探测技术研究 中国水利水电科学研究院 魏迎奇
    3 堰塞湖险情应急监测与预警技术研究 河海大学 郑东健
    4 堰塞湖致灾风险评估技术研究 南京水利科学研究院 钟启明
    5 高风险堰塞湖应急处置技术研究 长江勘测规划设计研究有限责任公司 蔡耀军
    6 堰塞湖应急抢险关键装备研发 中国葛洲坝集团勘测设计有限公司 王衡
    下载: 导出CSV

    表  2   堰塞湖风险等级划分

    Table  2   Division of risk grade of barrier lakes

    灾损 危险性
    极高
    极严重
    严重 II
    较严重
    一般
    下载: 导出CSV

    表  3   堰塞体单因素危险性级别

    Table  3   Danger levels of single factor of barrier body

    级别 分级指标
    Vb/(106 m3) Q/(m3·s-1) d50/mm H(m),LH
    极高 ≥100 ≥150 < 2 H≥70,LH < 20
    H [30, 70),LH≤5
    10~100 50~150 2~20 H≥70,LH≥20
    H [30, 70), LH (5, 20)
    H [15, 30), LH≤5
    1~10 10~50 20~200 H [30, 70),LH≥20
    H [15, 30), LH(5, 20)
    H < 15, LH≤5
    < 1 < 10 ≥200 H [15, 30), LH≥20
    H < 15, LH > 5
    下载: 导出CSV
  • [1] 柴贺军, 刘汉超, 张倬元. 中国滑坡堵江的类型及其特点[J]. 成都理工学院学报, 1998, 25(3): 411–416. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG803.008.htm

    CHAI He-jun, LIU Han-chao, ZHANG Zhuo-yuan. Study on the categories of landslide damming of rivers and their characteristics[J]. Journal of Chengdu University of Technology, 1998, 25(3): 411–416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG803.008.htm

    [2] 聂高众, 高建国, 邓砚. 地震诱发的堰塞湖初步研究[J]. 第四纪研究, 2004, 24(3): 293–301. doi: 10.3321/j.issn:1001-7410.2004.03.008

    NIE Gao-zhong, GAO Jian-guo, DENG Yan. Preliminary study on earthquake-induced dammed lake[J]. Quaternary Sciences, 2004, 24(3): 293–301. (in Chinese) doi: 10.3321/j.issn:1001-7410.2004.03.008

    [3] 王光谦, 王永强, 刘磊, 等. 堰塞坝及其溃决模拟研究评述[J]. 人民黄河, 2015, 37(9): 1–7. doi: 10.3969/j.issn.1000-1379.2015.09.001

    WANG Guang-qian, WANG Yong-qiang, LIU Lei, et al. Reviewed on barrier dam and simulation on dam breach[J]. Yellow River, 2015, 37(9): 1–7. (in Chinese) doi: 10.3969/j.issn.1000-1379.2015.09.001

    [4] 胡卸文, 罗刚, 王军桥, 等. 唐家山堰塞体渗流稳定及溃决模式分析[J]. 岩石力学与工程学报, 2010, 29(7): 1409–1417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201007017.htm

    HU Xie-wen, LUO Gang, WANG Jun-qiao, et al. Seepage stability analysis and dam-breaking mode of Tangjiashan barrier dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1409–1417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201007017.htm

    [5] 陈祖煜, 陈生水, 王琳, 等. 金沙江上游"11·03"白格堰塞湖溃决洪水反演分析[J]. 中国科学: 技术科学, 2020, 50(6): 763–774. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202006008.htm

    CHEN Zu-yu, CHEN Sheng-shui, WANG Lin, et al. Back analysis of the breach flood of the "11·03" Baige barrier lake at the Upper Jinsha River[J]. Scientia Sinica (Technologica), 2020, 50(6): 763–774. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202006008.htm

    [6] 蔡耀军, 栾约生, 杨启贵, 等. 金沙江白格堰塞体结构形态与溃决特征研究[J]. 人民长江, 2019, 50(3): 15–22. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201903004.htm

    CAI Yao-jun, LUAN Yue-sheng, YANG Qi-gui, et al. Study on structural morphology and dam-break characteristics of Baige barrier dam on Jinsha River[J]. Yangtze River, 2019, 50(3): 15–22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201903004.htm

    [7]

    CAI Y J, CHENG H Y, WU S F, et al. Breaches of the Baige Barrier Lake: emergency response and dam breach flood[J]. Science China Technological Sciences, 2020, 63(7): 1164–1176. doi: 10.1007/s11431-019-1475-y

    [8]

    COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988, 100(7): 1054–1068. doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2

    [9] 石振明, 马小龙, 彭铭, 等. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型[J]. 岩石力学与工程学报, 2014, 33(9): 1780–1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm

    SHI Zhen-ming, MA Xiao-long, PENG Ming, et al. Statistical analysis and efficient dam burst modelling of landslide dams based on a large-scale database[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1780–1790. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm

    [10]

    YANG F G, ZHOU X Q, LIU X N, et al. Experimental study of breach growth processes in sand dams of quake lakes[J]. Journal of Earthquake and Tsunami, 2012, 5(5): 445–459.

    [11]

    SCHMOCKER L, HAGER W H. Modelling dike breaching due to overtopping[J]. Journal of Hydraulic Research, 2009, 47(5): 585–597. doi: 10.3826/jhr.2009.3586

    [12]

    YAN J, CAO Z X, LIU H H, et al. Experimental study of landslide dam-break flood over erodible bed in open channels[J]. Journal of Hydrodynamics, Ser B, 2009, 21(1): 124–130.

    [13] 张婧, 曹叔尤, 杨奉广, 等. 堰塞坝泄流冲刷试验研究[J]. 四川大学学报(工程科学版), 2010, 42(5): 191–196. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005029.htm

    ZHANG Jing, CAO Shu-you, YANG Feng-guang, et al. Experimental study on outlet and scour of blocked dam[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(5): 191–196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005029.htm

    [14] 蒋先刚, 吴雷. 不同底床坡度下的堰塞坝溃决过程研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3008–3014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1041.htm

    JIANG Xian-gang, WU Lei. Influence of bed slope on breaching process of natural dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3008–3014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1041.htm

    [15] 钟启明, 陈生水, 邓曌. 堰塞坝漫顶溃决机理与溃坝过程模拟[J]. 中国科学: 技术科学, 2018, 48(9): 959–968.

    ZHONG Qi-ming, CHEN Sheng-shui, DENG Zhao. Breach mechanism and numerical modeling of barrier dam due to overtopping failure[J]. Scientia Sinica (Technologica), 2018, 48(9): 959–968. (in Chinese)

    [16] 钟启明, 陈生水, 梅世昂. 均质黏性土坝漫顶溃决机理及溃坝过程模拟[J]. 工程科学与技术, 2019, 51(5): 25–32. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201905004.htm

    ZHONG Qi-ming, CHEN Sheng-shui, MEI Shi-ang. Breach mechanism and breach process simulation of homogeneous cohesive earthen dam due to overtopping[J]. Advanced Engineering Sciences, 2019, 51(5): 25–32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201905004.htm

    [17]

    WANG G Q, LIU F, FU X D, et al. Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China[J]. Science in China Series E: Technological Sciences, 2008, 51(2): 82–94.

    [18]

    CAO Z X, YUE Z Y, PENDER G. Landslide Dam failure and flood hydraulics. Part II: coupled mathematical modelling[J]. Natural Hazards, 2011, 59(2): 1021–1045.

    [19] 谢忱, 李从江, 杨兴国, 等. 基于物理模型试验的堰塞坝冲刷溃决过程研究[J]. 工程科学与技术, 2021, 53(6): 43–53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202106004.htm

    XIE Chen, LI Cong-jiang, YANG Xing-guo, et al. Erosion and breach of landslide dam based on physical model tests[J]. Advanced Engineering Sciences, 2021, 53(6): 43–53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202106004.htm

    [20] 魏迎奇, 孙黎明, 傅中志, 等. 堰塞湖多源信息及其感知技术[J]. 人民长江, 2019, 50(4): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201904001.htm

    WEI Ying-qi, SUN Li-ming, FU Zhong-zhi, et al. Multi-source information and perception technology of barrier lakes[J]. Yangtze River, 2019, 50(4): 1–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201904001.htm

    [21] 何秉顺, 赵进勇, 王力, 等. 三维激光扫描技术在堰塞湖地形快速测量中的应用[J]. 防灾减灾工程学报, 2008, 28(3): 394–398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200803023.htm

    HE Bing-shun, ZHAO Jin-yong, WANG Li, et al. The application of landslide lake topographic measurement by LiDAR[J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28(3): 394–398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200803023.htm

    [22] 吕杰堂, 王治华, 周成虎. 西藏易贡滑坡堰塞湖的卫星遥感监测方法初探[J]. 地球学报, 2002, 23(4): 363–368. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200204014.htm

    LÜ Jie-tang, WANG Zhi-hua ZHOU Cheng-hu. A tentative discussion on the monitoring of the yigong landslide-blocked lake with satellite remote sensing technique[J]. Acta Geosicientia Sinica, 2002, 23(4): 363–368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200204014.htm

    [23] 孙黎明. 高山峡谷区滑坡堰塞体快速感知与模拟计算方法研究: 以白格堰塞湖为例[J]. 水利水电技术(中英文), 2021, 52(7): 44–52. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202107005.htm

    SUN Li-ming. Study on quick information perception and simulative calculation method of landslide dammed-body in alpine and gorge region: taking Baige Landslide-Dammed Lake as study case[J]. Water Resources and Hydropower Engineering, 2021, 52(7): 44–52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202107005.htm

    [24] 堰塞湖风险等级划分标准: SL 450—2009[S]. 2009.

    Standard for Classification of Risk Grade of Landslide Lake: SL 450—2009[S]. 2009. http://kns.cnki.net/detail/32.1117.TV20211D15.1934.006.html. (in Chinese)

    [25] 杜镇瀚, 钟启明, 董海洲, 等. 堰塞湖风险评估研究综述[J/OL]. 河海大学学报(自然科学版): 1-19[2022-01-21]

    DU Zhen-han, ZHONG Qi-ming, DONG Hai-zhou, et al. A review of demmed lake risk assessment sludies[J]. Journal of Hohai University (Natural Sciences): 1-19[2022-01-21]. http://kns.cnki.net/detail/Ol/32.1117.TV202/1015.1934.006.html. (in Chinese)

    [26] 堰塞湖应急处置技术导则: SL 451—2009[S]. 2009.

    Technique Guideline for Emergency Disposal of Landslide Lake: SL 451—2009[S]. 2009. (in Chinese)

    [27] 杨启贵, 姚晓敏, 申邵洪, 等. 基于应急与常态统合管理的堰塞湖风险处置实践: 以2020年清江屯堡堰塞湖处置为例[J]. 人民长江, 2020, 51(12): 25–30.

    YANG Qi-gui, YAO Xiao-min, SHEN Shao-hong, et al. Risk disposal of barrier lake based on routine and emergency coordinated management theory: case of Tunbao barrier lake on Qingjiang River in 2020[J]. Yangtze River, 2020, 51(12): 25–30. (in Chinese)

    [28] 刘宁, 杨启贵. 唐家山堰塞湖应急除险技术实践[J]. 中国工程科学, 2009, 11(6): 74–81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200906011.htm

    LIU Ning, YANG Qi-gui. The emergency handling technique and practice of Tangjiashan barrier lake[J]. Engineering Sciences, 2009, 11(6): 74–81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200906011.htm

    [29] LIU Ning, YANG Qi-gui, CHEN Zu-yu. Hazard mitigation for barrier lakes[M]. Wuhan: Changjiang Press, 2016. (in Chinese)
    [30] CAI Yao-jun, LI Jian-qing, PENG Wen-xiang. Emergence disposal technology of high-risk barrier lakes[M]. Wuhan: Changjiang Press, 2021. (in Chinese)
    [31] 余晓露, 郑东健. 基于人工神经网络的边坡新多点监控模型[J]. 人民黄河, 2020, 42(6): 117–119, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202006024.htm

    YU Xiao-lu, ZHENG Dong-jian. A new multi-point monitoring model of slope based on artificial neural network[J]. Yellow River, 2020, 42(6): 117–119, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202006024.htm

    [32] 武鑫, 郑东健, 刘永涛, 等. 滑坡失稳时间预测方法研究综述[J]. 水利水电科技进展, 2021, 41(4): 89–94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202104015.htm

    WU Xin, ZHENG Dong-jian, LIU Yong-tao, et al. A review of temporal prediction methods for landslide failure[J]. Advances in Science and Technology of Water Resources, 2021, 41(4): 89–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202104015.htm

    [33]

    SHAN Y B, CHEN S S, ZHONG Q M. Rapid prediction of landslide dam stability using the logistic regression method[J]. Landslides, 2020, 17(12): 2931–2956.

  • 期刊类型引用(0)

    其他类型引用(4)

图(21)  /  表(3)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  50
  • PDF下载量:  86
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回