Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

长距离调水工程建设与安全运行集成研究及应用

杨启贵, 张传健, 颜天佑, 刘琪, 李建贺

杨启贵, 张传健, 颜天佑, 刘琪, 李建贺. 长距离调水工程建设与安全运行集成研究及应用[J]. 岩土工程学报, 2022, 44(7): 1188-1210. DOI: 10.11779/CJGE202207002
引用本文: 杨启贵, 张传健, 颜天佑, 刘琪, 李建贺. 长距离调水工程建设与安全运行集成研究及应用[J]. 岩土工程学报, 2022, 44(7): 1188-1210. DOI: 10.11779/CJGE202207002
YANG Qi-gui, ZHANG Chuan-jian, YAN Tian-you, LIU Qi, LI Jian-he. Integrated research and application of construction and safe operation of long-distance water transfer projects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1188-1210. DOI: 10.11779/CJGE202207002
Citation: YANG Qi-gui, ZHANG Chuan-jian, YAN Tian-you, LIU Qi, LI Jian-he. Integrated research and application of construction and safe operation of long-distance water transfer projects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1188-1210. DOI: 10.11779/CJGE202207002

长距离调水工程建设与安全运行集成研究及应用  English Version

基金项目: 

“十三五”国家重点研发计划项目 2016YFC0401800

详细信息
    作者简介:

    杨启贵(1964—),男,正高级工程师,全国工程勘测设计大师,长江设计集团有限公司党委委员、副总经理,水利部首批5151人才工程部级专家、国家百千万人才工程国家级人选、有突出贡献中青年专家,全国抗震救灾模范,全国创新争先奖获得者,获水利部第三届“最美水利人”荣誉称号,享受国务院政府特殊津贴,兼任中国岩石力学与工程学会常务理事、湖北省灾害防御协会副会长等。先后承担了葛洲坝、隔河岩、三峡、水布垭、引大济湟等40余项大中型工程的设计工作,目前负责滇中引水工程等西部高原地区复杂地质环境水工隧洞的设计研究工作,在水工结构、岩土工程、病险工程治理设计等领域取得丰硕成果。负责或参与重大科研项目30余项,获国家科技进步二等奖2项(分别排名第1,第2),省部级奖20余项,授权专利50余项,主编专著9部,主(参)编标准8部,发表论文80余篇,主持完成了国家重点研发计划项目“长距离调水工程建设与安全运行集成研究及应用”。E-mail: yangqigui@cjwsjy.com.cn

  • 中图分类号: TV68

Integrated research and application of construction and safe operation of long-distance water transfer projects

  • 摘要: 基于国家跨流域调水工程建设重大需求和相关学科国内外最新研究发展,以滇中引水、引汉济渭、新疆大埋深隧洞等典型调水工程为依托,针对“大埋深隧洞开挖围岩响应模式与灾变机制”、“大埋深隧洞围岩–支护体系协同承载机理与全寿命设计理论”、“地震等自然灾害下输水建筑物的响应特征及灾变模式”等重大科学问题,以及“大埋深隧洞灾害预测预报与防治成套技术”、“隧洞穿越活断层抗断技术”、“大跨度高架渡槽抗震技术”、“闸泵阀关键设备研发及智能控制技术”、“调水工程全寿命周期安全监控与调控技术”等关键技术,开展了包括“大埋深隧洞岩体工程特性测试技术与综合评价方法”在内的10个方面的研究。提出了千米级深埋隧洞的地球物理探测及岩体特性测试技术与围岩特性评价方法,形成了隧洞高压突涌水预测与防治成套技术,开发了15 MPa超高压灌浆技术装备,提出了隧洞穿越错动量达0.5 m活断层抗断结构,研发了Ⅷ度强震区大型高架渡槽的抗震技术,并研制完成了220 m扬程40 MW级泵组、DN2000智能流量调节阀安全控制成套技术,形成了长距离调水工程建设及安全运行成套技术装备。项目相关研究成果已在依托工程中示范应用,为工程建设运行提供了坚实的技术支撑,同时有助于推动长距离调水及相关工程领域的技术进步,保障中国水资源宏观调控战略的有效实施,具有显著的社会、经济和生态效益。
    Abstract: According to the major needs of the national inter-basin water transfer projects in China and the worldwide research situations of related disciplines, the research program focuses on the integrated research and application of construction and safe operation of long-distance water transfer projects. Based on the typical water transfer projects such as the water diversion project in central Yunnan, the water diversion project from Hanjiang River to Weihe River and the tunnel project with large buried depth in Xinjiang. The researches on ten aspects including "Testing technology and comprehensive evaluation method for rock mass characteristics of tunnels with large buried depth" are conducted, aiming at the significant scientific issues such as "response mode and disaster mechanism of excavation of surrounding rock of large buried tunnels", "coordinated bearing mechanism and life-cycle design theory of surrounding rock-support system of large buried tunnels" and "response characteristics and disaster mode of water conveyance buildings under natural disasters such as earthquakes", and the following key technologies: "complete set of disaster prediction and prevention technology of large buried tunnels", "fracture resistance technology of tunnel lining crossing active faults", "seismic mitigation technology of long-span high-rise aqueduct", "development and intelligent control technology of key equipments of gates, pumps and valves", and "life cycle safety monitoring and regulation technology of water transfer projects". The geophysical detection, the testing technology of rock mass characteristic and the evaluation method for characteristics of surrounding rock of deep buried tunnels are put forward. A complete set of technology for the prediction and prevention of high-pressure water inrush in tunnels is formed. A 15 MPa ultra-high pressure grouting technical equipment is developed. The anti-fracture structure of the tunnel crossing an active fault with a displacement of 0.5 m is put forward. A large-scale high-pressure grouting structure in the Ⅷ-degree strong earthquake area is developed. The seismic mitigation technology of aqueduct and the complete set of safety control technology of 220 m-lift and 40 MW-grade-power pump unit and DN2000 intelligent flow-control valve are developed and completed. The relevant research results are applied in some projects, and
  • 桩−筏复合地基因对不均匀沉降问题具有较好的控制效果,在高速公路、高速铁路和地铁路基的建设中已获得应用[1]

    目前,在刚性桩复合地基方面国内外学者取得了一定的研究成果。在理论分析方面,相关研究人员分别基于荷载传递方法、传递函数法与单元体相结合的方法、最小势能原理与弹簧组模型、桩-土-筏非线性共同作用模型,分析了路堤荷载下桩筏复合地基中桩、土、垫层三者之间的彼此影响;研究了桩-土荷载分担比与桩之间的距离、路堤土的剪切模量、路堤的高度以及桩土相对刚度之间的关系,垫层对应力调节和沉降的影响;提出了求解地基固结沉降的简化分析方法、桩和筏板的沉降计算方法[2-7]。在数值模拟方面,相关学者分析了路堤荷载下孔隙水压力、竖向变形及侧向水平变形的变化规律;计算了桩间距对降低路堤沉降和不均匀沉降的影响[8-12]。在现场试验方面,相关学者研究了群桩效应系数与桩数、桩帽、桩长、褥垫层、荷载的关系;分析了筏板应力、应变、桩顶应力及土压力与时间的关系,路堤-桩-地基的相互作用,地基土孔隙水压力、沉降、分层沉降及荷载传递的规律[13-15]

    已有的关于刚性桩复合地基的研究大多集中在静力范围内。在交通荷载作用下,关于桩-筏复合地基的研究仍较少,尤其是将X形桩替换其中的圆形桩方面的研究更少[16]。为此,笔者所在团队在动力荷载作用下进行了一些X形桩承式路堤模型试验。基于X形桩-网路堤模型试验,揭示了沥青加铺层对路面顶部位移的影响、X形桩周土体的非对称运动以及加垫层后的集中系数[17-18];交通荷载作用下的土拱高度小于静载作用下的土拱高度[19]。此外,研究人员比较了X形桩-筏复合地基在风干砂土和饱和砂土地基中的动力响应[21]。结果表明,地基振动速度的大小和变化与地基的饱和程度密切相关,列车速度是影响X形桩筏复合地基动力响应的一个重要因素。然而,在交通荷载作用下,不同路堤高度下X形桩-筏复合地基的动力响应变化规律尚不清楚。为此,本文基于模型试验方法,着重分析不同路堤高度下振动速度、动土压力和桩身动应力随交通荷载的变化规律。

    为研究不同路堤高度下X形桩-筏复合地基的动力响应,本文选取4种路堤高度(h1h4)下路堤横截面方向上中间的两排桩进行研究,如图1所示。开展模型加载试验时,首先将不同的路堤高度换算成对应的恒载x(kN)预先施加于筏板上,然后再在筏板上施加循环的车辆荷载,试验加载示意图见图2。图中模型槽的长、宽和高分别为5,4和7 m。本试验的几何相似常数为1∶5,各物理量的相似比见表1

    图  1  不同路堤高度下X形桩-筏复合地基
    Figure  1.  XCC pile−raft composite foundation under different embankment heights
    图  2  试验加载示意图
    Figure  2.  Schematic diagram of test loading
    表  1  模型相似比
    Table  1.  Similarity ratios for model
    参数相似比参数相似比
    长度/m1/5体积/m31/125
    密度/(kg·m-3)1弹性模量/MPa1
    加速度/(m·s-2)1力/kN1/5
    应力/kPa5速度/(m·s-1)1/5 
    时间/s1/5 频率/kPa5 
    下载: 导出CSV 
    | 显示表格

    本模型试验的X形桩-筏复合地基从下至上依次由地基土、X形桩、碎石垫层和筏板组成。其中地基土为中砂,表2为其物理参数。在模型槽四周墙壁上预先布置“两布三膜”,以减小反射波对试验结果的影响[16]。在填筑砂土的过程中,用夯机将每层相同重量相同厚度(300 mm)的砂土均匀压实到250 mm厚,后经试验测得每层填土的相对密实度为0.66<Dr<0.8,属于中密状态。用填筑砂土相类似的方法,在桩顶处均匀填筑100 mm厚级配良好的碎石(Cu=6,Cc=2.89),然后压实到60 mm。

    表  2  砂土基本物理指标
    Table  2.  Physical indices of sand
    天然密度/(g·cm-3)天然含水率/%Gs不均匀系数Cu曲率系数Cc
    1.4784.082.672.420.93
    下载: 导出CSV 
    | 显示表格

    X形桩的截面形状受3个参数2a(开弧间距)、θ(开弧角度)和2R(外包圆直径)控制,见图3。本试验中3个参数依次为39 mm、90°和152 mm,桩长为3960 mm,4根X形桩分别命名为A、B、C和D桩,其布置方式见图3

    图  3  X形桩及布置示意图
    Figure  3.  Arrangement of XCC piles

    试验仪器布置如图4所示,在4根桩的正中心每间隔1 m布置一个速度计,在筏板面层中心点附近对称布置2个速度计。在速度计附近对应埋设5个具有温度补偿功能的动土压力盒,同时为了保证其测量精度,经过计算动土压力盒的量程分别选用0.1~0.3 MPa,其准确度误差≤0.3°%F·S。

    图  4  试验仪器布置示意图
    Figure  4.  Layout of instruments for model tests

    静动力试验加载控制系统由静动力作动器、控制器、荷载输入控制机、液压系统等组成。控制器可模拟不同的交通荷载,数据采集分析系统可进行连续不间断的数据采集。

    本模型试验通过简化,采用正弦波荷载模拟列车的一个轮轴荷载[16],其荷载形式为

    Q(t)=x+Asinω(tT/4) (1)

    式中 Q(t)为施加在筏板表面中心的荷载(kN);x为路堤高度对应的等效恒载(kN);A为振幅(kN);ω=2πf为角速度(rad/s),其中f为频率(Hz);t为时间(s);T为荷载循环周期(s)。

    图5为式(1)对应的轮轴荷载,表3为试验加载工况。

    图  5  施加的正弦波荷载
    Figure  5.  Dine wave loads
    表  3  试验加载工况
    Table  3.  Load cases of tests
    荷载Q(t)/kN恒载x/kN振幅A/kN频率f/Hz循环次数/次
    Q(t)2051025000
    Q(t)2551025000
    Q(t)3051025000
    Q(t)3551025000
    下载: 导出CSV 
    | 显示表格

    (1)速度响应时程曲线

    以恒载20 kN、振幅5 kN的循环荷载为例,筏板顶部、地基深度0,1,2,3,4 m处的速度响应时程曲线见图6

    图  6  速度响应时程曲线
    Figure  6.  Time-history curves of velocity response

    在筏板处,速度响应的波峰和波谷与所施加的正弦波荷载相同步,呈现正弦波形。在1 m处,当荷载处于峰值时,速度响应曲线出现了一小一大的双峰值。随着地基深度的增加,速度响应的两个峰值大小逐渐趋近于相等。在4 m处,这两个峰值大小基本相等,呈明显的M形。由上述分析可知,在筏板处速度响应的大小和振动形式主要受循环荷载的影响,随着振动向地基深层转播的过程中,速度响应受深度、密实度等其它因素的影响越来越重,其大小逐渐衰减、形状逐渐趋于复杂。

    (2)速度响应与深度的关系

    在振幅为5 kN,恒载分别为20,25,30,35 kN的循环荷载作用下,X形桩筏复合地基的速度响应如图7所示。

    图  7  速度响应与深度的关系
    Figure  7.  Vibration velocities recorded at different layers

    图7可知,恒载越大(即路堤高度越大),筏板的速度响应越小,筏板振动越弱。反之,路堤高度越小,筏板的速度响应越大,筏板振动越强。在深度0 m以下,对于不同的路堤高度,速度响应随深度的增加均近似呈线性减小。需要注意的是,从筏板经碎石垫层到地基表层(深度0 m处)的0.36 m范围内,速度响应衰减尤为显著,基本衰减为筏板的34%~40%,文献[16]也得到了相似的结果。因筏板刚度大,对振动速度衰减的影响可忽略不计,由此可得出0.06 m厚的碎石垫层是振动速度骤减的主要原因,碎石垫层具有良好的阻尼效果。在实际工程中,高铁、地铁列车大部分穿过城区,为最大限度降低列车运行引起的振动对轨道沿线周围建筑物的影响,国内外学者及工程师提出了许多减振措施。基于上述模型试验结果可知,碎石垫层具有良好的减振效果,在考虑减振措施时可供工程师参考使用。

    同时注意到,当不同大小的振动速度从筏板传递到在地基深度3 m处时,各速度响应基本相同,在3~4 m范围内,速度响应的大小及变化规律也基本相同,这表明轮轴荷载引起速度响应的差异主要集中在从筏板到地基深度3 m处的范围内,而3 m以下的速度响应大小及变化规律基本相同。

    (3)速度响应与恒载的关系

    筏板顶部速度响应v(mm/s)与恒载x(kN)之间的关系曲线如图8所示,vx可用回归方程(2)进行描述:

    v=a+bx+cx2, (2)
    图  8  筏板速度响应与恒载的关系曲线
    Figure  8.  Relationship between velocity response of raft and dead load

    本例中参数a=12.648,b=-0.519,c=0.007,相关系数R2=0.999。

    图8可知,在循环荷载的振幅为5 kN,恒载分别为20,25,30,35 kN的情况下,随着恒载(即路堤高度)的增加,轮轴荷载引起的筏板振动情况逐渐减弱,恒载与筏板的速度响应之间的关系曲线呈一元二次函数形式。

    循环荷载加载一周时轴向土压力波峰与波谷的差值为动土压力σsd图9为不同正弦波循环荷载作用下地基表层的动土压力时程曲线。由图9可知,动土压力随荷载的加、卸载过程也呈现同样的增加、减小变化过程,且循环周期与所施加的荷载周期保持一致,时程曲线的峰值与一个轮轴荷载相对应。

    图  9  动土压力时程曲线
    Figure  9.  Time-history curves of dynamic soil pressure

    当循环荷载振动到25000次时,选取最后20个循环周期内动土压力响应的平均值作为此时的动土压力值,通过对此循环次数的动土压力进行回归分析,地基表面的动土压力σsd(kPa)与恒载x(kN)之间的关系曲线如图10所示,σsd- x曲线可用下面的回归方程(3)进行描述:

    σsd=a+bx, (3)
    图  10  地基表层动土压力与恒载的关系曲线
    Figure  10.  Relationship between dynamic soil pressure of foundation surface and dead load

    本例中a=7.629,b=-0.085,相关系数R2=0.954。由图10可知,恒载越小(即路堤高度越小),地基表层的动土压力越大;反之,路堤高度越大,动土压力越小。地基表层的动土压力与路堤高度两者之间近似呈线性关系。

    将试验测得的桩顶应变转换成桩顶动应力σpd归分析见图11,σpd-x之间的关系曲线可用回归方程(4)进行描述:

    σpd=a+bx (4)
    图  11  桩顶动应力与恒载关系曲线
    Figure  11.  Dynamic stress of pile top versus dead load

    本例中a=284.978,b=-3.660,相关系数R2=0.991。由图11可知,随着恒载(即路堤高度)的增加,桩顶动应力呈线性逐渐减小。这表明,路堤高度越小,轮轴荷载传递到桩顶的动应力越大,桩身的振动越强烈;反之,路堤高度越大,轮轴荷载传递到桩顶的动应力越小,桩身的振动越弱。因此在实际工程中,如果要达到降低桩身振动的目的,可以考虑通过增加路堤高度的方法来实现。

    本文通过开展循环荷载作用下X形桩−筏复合地基模型试验,分析不同恒载(即路堤高度)的动力响应,可以得出以下结论:

    (1)在不同路堤高度下,轮轴荷载引起的速度响应的差异主要集中在从筏板到地基深度3 m处的范围内,而3 m以下的速度响应大小及变化规律基本相同。由于碎石垫层的存在,速度响应从筏板顶部到地基深度0 m的0.36 m范围内速度响应锐减了34%~40%。

    (2)随着路堤高度(恒载)的增加,轮轴荷载引起的筏板振动情况呈一元二次函数形式逐渐减弱。

    (3)路堤高度(恒载)越大,轮轴荷载传递到地基表层的动土压力和桩顶的动应力就越小,随着恒载的增加,动土压力与桩顶动应力均呈线性减小。

  • 图  1   千米级欠稳定地层绳索取芯钻杆地应力测试技术示意图

    Figure  1.   Schematic diagram of in-situ stress testing technology of rope cored drill pipe in kilometer-class unstable formation

    图  2   新型深孔岩体水文地质参数原位测试设备

    Figure  2.   New in-situ testing equipments for hydrogeological parameters of deep-hole rock mass

    图  3   深孔振荡试验设备

    Figure  3.   Deep-hole oscillation testing equipments

    图  4   基于深钻孔数字钻进技术的岩体质量探测

    Figure  4.   Quality detection of rock mass based on deep-borehole digital drilling technology

    图  5   利用深钻孔数字钻进技术在引松工程现场测试

    Figure  5.   Application of deep-borehole digital drilling technology in field tests

    图  6   典型软岩大变形地层条件

    Figure  6.   Formation conditions of typical soft rock with large deformation

    图  7   大埋深隧洞不良地质超前定量探测方法

    Figure  7.   Advance quantitative detection method for unfavorable geology in large buried tunnel

    图  8   TBM搭载的联合超前探测系统

    Figure  8.   Joint advance detection system carried by TBM

    图  9   隧洞岩体地质虚拟展示系统

    Figure  9.   Virtual display system of rock mass geology of tunnel

    图  10   防高压水钻孔孔口封闭装置

    Figure  10.   Sealing devices for anti-high-pressure water drilling hole orifice

    图  11   15 MPa超高压灌浆泵结构图

    Figure  11.   Structural drawing of 15 MPa ultra-high pressure grouting pump

    图  12   高压单孔劈裂循环注浆工艺

    Figure  12.   High-pressure single-hole splitting circulation grouting technology

    图  13   超前预注浆新材料

    Figure  13.   Advanced pre-grouting new materials

    图  14   三维离散-连续耦合的跨断层隧洞错动破坏数值仿真方法

    Figure  14.   Three-dimensional discrete continuous coupling numerical simulation method for staggered failure of tunnel crossing faults

    图  15   隧洞错断模型试验与断裂带位移分布PIV监测

    Figure  15.   Model tests on tunnel faults and PIV monitoring of displacement distribution in fault zone

    图  16   铰接隧洞变形

    Figure  16.   Deformations of articulated tunnel

    图  17   汇水层对外水压力分布的影响

    Figure  17.   Influence of catchment layer on distribution of external water pressure of lining structure

    图  18   真三维地质力学试验

    Figure  18.   True 3D geomechanical tests

    图  19   隧洞支护时机与所需支护强度

    Figure  19.   Support time of tunnel and required support strength

    图  20   可靠度指标和失效概率随时间变化规律

    Figure  20.   Variation law of reliability index and failure probability with time

    图  21   基于系统动力学的堤防工程风险反馈模型

    Figure  21.   Risk feedback model for embankment engineering based on system dynamics

    图  22   长距离复杂调水工程安全实时监测及预警智慧管理平台系统总体架构

    Figure  22.   Overall architecture of safety real-time monitoring and early warning intelligent management platform system for long-distance complex water transfer project

    图  23   多风险耦合作用下的施工分层仿真模型

    Figure  23.   Layered simulation model for construction under multi-risk coupling

    图  24   隧洞内部风速分布

    Figure  24.   Distribution of wind speed in tunnel

    图  25   隧洞施工进度信息集成与分析功能示意图

    Figure  25.   Schematic diagram of tunnel construction progress information integration and analysis function

    图  26   渡槽模型振动台流固相互作用动力试验

    Figure  26.   Dynamic tests on fluid-solid interaction on shaking table of aqueduct model

    图  27   渡槽结构的非线性地震响应计算结果

    Figure  27.   Calculation results of nonlinear seismic response of aqueduct structure

    图  28   墩槽塑性铰力学性能试验

    Figure  28.   Tests on mechanical properties of plastic hinge of pier slot

    图  29   斜面导向式减隔震自复位支座

    Figure  29.   Self-resetting support of inclined plane-guided vibration reduction and isolation

    图  30   优化平台结构图

    Figure  30.   Structural diagram of optimization platform

    图  31   全流道流线

    Figure  31.   Full channel streamline

    图  32   A1573水泵模型试验装置

    Figure  32.   Model test devices for A1573 pump

    图  33   流量调节阀模型

    Figure  33.   Model for flow regulating valve

    图  34   内部流线图

    Figure  34.   Diagram of internal streamline

    图  35   DN2000流量调节阀三维模型图

    Figure  35.   Three-dimensional model for DN2000 flow regulating valve

    图  36   水泵机组数据采集与状态监测

    Figure  36.   Data acquisition and condition monitoring of water pump unit

    图  37   阀门安全管理系统

    Figure  37.   Valve safety management system

    图  38   蓄量动态控制的执行和实现流程

    Figure  38.   Implementation and realization process of storage dynamic control

    图  39   应急调度主程序流程图

    Figure  39.   Flow chart of main program of emergency dispatching

    图  40   事故应急调度、水锤模拟及防护交互界面

    Figure  40.   Interactive interface of emergency dispatching of accident, simulation and protection of water hammer

    图  41   滇中引水工程应用现场

    Figure  41.   Application site of water diversion project in central area of Yunnan

    图  42   水压致裂测试采集曲线

    Figure  42.   Acquisition curves of hydraulic fracturing tests

    图  43   香炉山隧洞TBM过芹菜塘断裂带纵剖面塑性区及位移场

    Figure  43.   Plastic zones and displacement fields of longitudinal section of Xianglushan tunnel TBM through Qincaitang fault zone

    图  44   蠕滑活动断层滑动方式判定标准

    Figure  44.   Criteria for determining slip mode of creep active fault

    图  45   香炉山隧洞活动断层高频大地电磁剖面

    Figure  45.   High-frequency magnetotelluric profile of active fault in Xianglushan tunnel

    图  46   活动断裂错动位移云图

    Figure  46.   Staggered displacement nephogram of active fault

    图  47   积福村渡槽三维有限元模型

    Figure  47.   Three-dimensional finite element model for Jifu village aqueduct

    图  48   自动化监测系统架构

    Figure  48.   Architecture of automatic monitoring system

    图  49   岩爆加强支护

    Figure  49.   Reinforced support for rock burst

    图  50   第二掘进段仿真工期分布和完工概率曲线图

    Figure  50.   Distribution of simulated duration and curves of completion probability of second tunneling section

    图  51   系统主界面

    Figure  51.   Main interface of system

    图  52   三河口水利枢纽DN2000流量调节阀

    Figure  52.   Application of Sanhekou water control project

    图  53   断层泥样本微观结构扫描

    Figure  53.   Microstructural scanning of fault gouge samples

    图  54   岩体–混凝土接触面循环剪切仪

    Figure  54.   Rock-mass concrete contact surface cyclic shear apparatus

    图  55   HW150型钢拱架+缓释消能层复合支护结构

    Figure  55.   Composite support structure of HW150 steel arch + slow release energy dissipation layer

    图  56   快速封堵前后的掌子面围岩出水情况

    Figure  56.   Water outflow of surrounding rock of tunnel face before and after rapid plugging

    图  57   T9+199激发极化探测与开挖揭露情况

    Figure  57.   Polarization detection and excavation exposure at the mileage of T9+199

    图  58   T9+199地震波超前探测与开挖揭露情况

    Figure  58.   Seismic wave detection and excavation exposure at the mileage of T9+199

    图  59   牛栏江—滇池补水智慧管理系统构架

    Figure  59.   Framework of Niulanjiang-Dianchi water replenishment intelligent management system

    表  1   课题设置

    Table  1   Setting of tasks

    序号 课题名称 承担单位 负责人
    1 大埋深隧洞岩体工程特性测试技术与综合评价方法 水利部水利水电规划设计总院 王志强
    2 大埋深隧洞围岩大变形及岩爆预测与防控技术 长江水利委员会长江科学院 丁秀丽
    3 隧洞穿越活断层围岩–衬砌灾变机制与抗断技术 中国长江三峡集团公司 吴海斌
    4 大埋深隧洞围岩–支护体系协同承载机理与全寿命设计理论及方法 长江勘测规划设计研究有限责任公司 杨启贵
    5 高压水害等不良地质条件下深埋长隧洞施工灾害处治和成套技术研究 水利部水利水电规划设计总院 刘志明
    6 大埋深长距离隧洞建设智能仿真与建设信息集成技术 天津大学 王晓玲
    7 高烈度区高架大型输水渡槽抗震及减隔震关键技术研究 中国水利水电科学研究院 王海波
    8 长距离调水工程闸泵阀系统关键设备与安全运行集成研究及应用 中国水利水电科学研究院 殷峻暹
    9 长距离复杂调水工程长效安全运行保障技术与示范 南京水利科学研究院 何勇军
    10 长距离输水渠隧系统水力特性及安全高效调控关键技术研究 长江勘测规划设计研究有限责任公司 黄会勇
    下载: 导出CSV

    表  2   不同地层条件的大变形发生机制

    Table  2   Mechanism of large deformation under different foundation conditions

    赋存环境条件 地层条件 大变形发生机制
    高地应力及由此引发的强烈卸荷 物性软岩 软岩强度低,在高地应力作用下发生持续塑性变形
    薄层状岩体 高应力卸荷扰动使与主应力矢量小角度相交的层面张开、层间岩体弯折破裂
    地层富水,或开挖卸荷引发地下水向临空面汇集,或施工用水排泄不及时渗入围岩 薄层状
    岩体
    层间充填物与地下水作用导致岩体强度持续降低,诱发局部显著变形并垮塌
    遇水软化岩石 岩石遇水软化导致强度降低,使得软化部位显著变形
    蚀变岩 蚀变岩强度低,使得蚀变部位显著变形
    遇水膨胀岩石 含亲水性矿物岩石遇水后体积膨胀,导致显著变形
    弱胶结/无胶结
    岩体
    胶结性能差,开挖扰动诱发地层松动,粉细砂遇水显著劣化加剧变形
    断层破碎带 岩体完整性差,开挖卸荷进一步使围岩碎裂化,导致围岩显著变形坍塌
    下载: 导出CSV
  • [1] 叶英. 隧道施工超前地质预报[M]. 北京: 人民交通出版社, 2011.

    YE Ying. Tunnel construction ahead geological prediction[M]. Beijing: China Communications Press, 2011. (in Chinese)

    [2] 李建平, 王庆学, 张晓慧. 深孔地应力测试在铁路隧道工程勘察中的应用[J]. 中国煤炭地质, 2013, 25(9): 47–51. doi: 10.3969/j.issn.1674-1803.2013.09.10

    LI Jian-ping, WANG Qing-xue, ZHANG Xiao-hui. Application of deep borehole crustal stress testing on railway tunnel engineering prospecting[J]. Coal Geology of China, 2013, 25(9): 47–51. (in Chinese) doi: 10.3969/j.issn.1674-1803.2013.09.10

    [3] 申建平. 测井技术对隧道深孔试验的指导作用研究[J]. 铁道工程学报, 2013, 30(3): 58–61. doi: 10.3969/j.issn.1006-2106.2013.03.012

    SHEN Jian-ping. Research on effect of logging technology on guiding tunnel deep bore testing[J]. Journal of Railway Engineering Society, 2013, 30(3): 58–61. (in Chinese) doi: 10.3969/j.issn.1006-2106.2013.03.012

    [4] 殷黎明, 杨春和, 罗超文, 等. 高压压水试验在深钻孔中的应用[J]. 岩土力学, 2005, 26(10): 1692–1694. doi: 10.3969/j.issn.1000-7598.2005.10.034

    YIN Li-ming, YANG Chun-he, LUO Chao-wen, et al. Application of high water-pressure test to deep borehole[J]. Rock and Soil Mechanics, 2005, 26(10): 1692–1694. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.10.034

    [5] 李生杰, 谢永利, 吴丹泽, 等. 穿越煤系地层隧道围岩大变形机制及处治研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3501–3508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2065.htm

    LI Sheng-jie, XIE Yong-li, WU Dan-ze, et al. Research on mechanism of large deformation and countermeasures of surrounding rocks of tunnel through coal strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3501–3508. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2065.htm

    [6] 李国良, 刘志春, 朱永全. 兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J]. 现代隧道技术, 2015, 52(1): 62–68. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501010.htm

    LI Guo-liang, LIU Zhi-chun, ZHU Yong-quan. On the large squeezing deformation law and classification criteria for the Lanzhou-Chongqing railway tunnels in soft and high geostress rocks[J]. Modern Tunnelling Technology, 2015, 52(1): 62–68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501010.htm

    [7] 吴世勇, 周济芳, 陈炳瑞, 等. 锦屏二级水电站引水隧洞TBM开挖方案对岩爆风险影响研究[J]. 岩石力学与工程学报, 2015, 34(4): 728–734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504009.htm

    WU Shi-yong, ZHOU Ji-fang, CHEN Bing-rui, et al. Effect of excavation schemes of TBM on risk of rock burst of long tunnels at Jinping Ⅱhydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 728–734. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504009.htm

    [8] 何满潮, 李晨, 宫伟力, 等. NPR锚杆/索支护原理及大变形控制技术[J]. 岩石力学与工程学报, 2016, 35(8): 1513–1529. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm

    HE Man-chao, LI Chen, GONG Wei-li, et al. Support principles of NPR bolts/cables and control techniques of large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1513–1529. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm

    [9] 孙风伯, 赵伯明, 许丁予, 等. 活动断裂工程危害、破裂参数评价与工程应用[J]. 土木工程学报, 2015, 48(增刊1): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1022.htm

    SUN Feng-bo, ZHAO Bo-ming, XU Ding-yu, et al. The engineering critically analysis of active faults, the evaluation methods of fracture parameters and engineering application[J]. China Civil Engineering Journal, 2015, 48(S1): 137–141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1022.htm

    [10] 刘学增, 谷雪影, 代志萍, 等. 活断层错动位移下衬砌断面型式对隧道结构的影响[J]. 现代隧道技术, 2014, 51(5): 71–77. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201405013.htm

    LIU Xue-zeng, GU Xue-ying, DAI Zhi-ping, et al. Influence of lining section type on a tunnel structure under active fault movement[J]. Modern Tunnelling Technology, 2014, 51(5): 71–77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201405013.htm

    [11] 张顶立. 隧道围岩稳定性及其支护作用分析[J]. 北京交通大学学报, 2016, 40(4): 9–18. doi: 10.11860/j.issn.1673-0291.2016.04.002

    ZHANG Ding-li. Analysis of surrounding rock stability and support action in tunnels[J]. Journal of Beijing Jiaotong University, 2016, 40(4): 9–18. (in Chinese) doi: 10.11860/j.issn.1673-0291.2016.04.002

    [12] 孙毅, 张顶立. 隧道复杂支护结构体系的协同作用原理[J]. 工程力学, 2016, 33(12): 52–62. doi: 10.6052/j.issn.1000-4750.2016.05.ST04

    SUN Yi, ZHANG Ding-li. Synergy principle of complex supporting structural systems in tunnels[J]. Engineering Mechanics, 2016, 33(12): 52–62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.ST04

    [13] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6): 1090–1113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406003.htm

    LI Shu-cai, LIU Bin, SUN Huai-feng, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090–1113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406003.htm

    [14] 谭忠盛, 王秀英, 万飞, 等. 关角隧道突涌水防治技术体系研究[J]. 土木工程学报, 2017, 50(增刊2): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm

    TAN Zhong-sheng, WANG Xiu-ying, WAN Fei, et al. Research on prevention and control technology system of sudden water inflow of Guanjiao tunnel[J]. China Civil Engineering Journal, 2017, 50(S2): 1–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm

    [15] 朱旭鹏. 大型渡槽抗震性能试验研究及分析[D]. 长沙: 湖南大学, 2013.

    ZHU Xu-peng. Test research and analysis on seismic behavior of large-scale aqueduct[D]. Changsha: Hunan University, 2013. (in Chinese)

    [16] 杨晓蕾, 邱象玉, 杨进新. 长距离输水管道启泵水锤模拟及试验验证[J]. 水利规划与设计, 2016(3): 116–118. doi: 10.3969/j.issn.1672-2469.2016.03.041

    YANG Xiao-lei, QIU Xiang-yu, YANG Jin-xin. Simulation and experimental verification of actuating pump water hammer in long distance water transmission pipeline[J]. Water Resources Planning and Design, 2016(3): 116–118. (in Chinese) doi: 10.3969/j.issn.1672-2469.2016.03.041

    [17] 徐放, 李志鹏, 邹顺利, 等. 高扬程泵站停泵水锤防护措施的比较与分析[J]. 给水排水, 2017, 53(12): 106–110. doi: 10.3969/j.issn.1002-8471.2017.12.023

    XU Fang, LI Zhi-peng, ZOU Shun-li, et al. Comparison and analysis of protective measures against pump-failure water hammer in high lift pumping station[J]. Water & Wastewater Engineering, 2017, 53(12): 106–110. (in Chinese) doi: 10.3969/j.issn.1002-8471.2017.12.023

    [18] 李强. 长距离输水系统明满流及水力控制研究[D]. 天津: 天津大学, 2007.

    LI Qiang. Study on Free-Surface-Pressurized Flow and Hydraulic Control in the Long-Distance Water Diversion System[D]. Tianjin: Tianjin University, 2007. (in Chinese)

    [19] 王桂平, 刘国彬. 水工隧洞运营期风险管理应用研究[J]. 地下空间与工程学报, 2009, 5(4): 820–824, 828. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200904035.htm

    WANG Gui-ping, LIU Guo-bin. Application and research on risk administration of hydraulic engineering tunnel in the operation period[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(4): 820–824, 828. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200904035.htm

    [20] 邬爱清, 韩晓玉, 尹健民, 等. 一种新型绳索取芯钻杆内置式双管水压致裂地应力测试方法及其应用[J]. 岩石力学与工程学报, 2018, 37(5): 1126–1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805008.htm

    WU Ai-qing, HAN Xiao-yu, YIN Jian-min, et al. A new hydraulic fracturing method for rock stress measurement based on double pressure tubes internally installed in the wire-line core drilling pipes and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1126–1133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805008.htm

    [21] 尹健民, 邬爱清, 李会中, 等. 绳索取芯钻杆双回路水压致裂法地应力测试装置及测试方法: CN103900751B[P]. 2016-02-24.

    YIN Jian-min, WU Ai-qing, LI Hui-zhong, et al. In-Situ Stress Test Device and Test Method of Double Loop Hydraulic Fracturing Method for Wireline Coring Drill Pipe: CN103900751B[P]. 2016-02-24. (in Chinese)

    [22] 黄华, 李汉桥, 谢实宇, 等. 一种深孔压水试验装置: CN109162695A[P]. 2019-01-08.

    HUANG Hua, LI Han-qiao, XIE Shi-yu, et al. A Water Pump-in Test Device in the Deep Hole: CN209308673U[P]. 2016-02-24. (in Chinese)

    [23] 周云, 石华国, 王家祥, 等. 一种钻孔压水试验多通道转换快速卸压装置: CN209115072U[P]. 2019-07-16.

    ZHOU Yun, SHI Guo-hua, WANG Jia-xiang, et al. A Fast Pressure Relief Device with the Multi-Channel Switching for Borehole Water Pressure Test: CN209115072U[P]. 2019-07-16. (in Chinese)

    [24] 戴云峰, 周志芳, 赵燕容. 确定倾斜填充裂隙水文地质参数的测试装置及其测试方法: CN106869909A[P].

    DAI Yun-feng, ZHOU Zhi-fang, ZHAO Yan-rong. A Testing Device and Method for Determining Hydrogeological Parameters of Inclined Filling Fractures: CN106869909B[P]. 2019-12-10. (in Chinese)

    [25] 曹瑞琅, 王玉杰, 赵宇飞, 等. 基于钻进过程指数定量评价岩体完整性原位试验研究[J]. 岩土工程学报, 2021, 43(4): 679–687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104013.htm

    CAO Rui-lang, WANG Yu-jie, ZHAO Yu-fei, et al. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679–687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104013.htm

    [26] 丁秀丽, 张雨霆, 黄书岭. 隧洞围岩大变形机制、挤压大变形预测及应用[J]. 岩石力学与工程学报, 2022, 录用待刊

    DING Xiu-li, ZHANG Yu-ting, HUANG Shu-ling, et al. Mechanism of large deformation of surrounding rock masses of tunnels, prediction method of squeezing large deformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, in press. (in Chinese)

    [27]

    NIE L C, ZHOU W, XU X J, et al. TBM-mounted seismic ahead-prospecting for fast detecting anomalous geology ahead of tunnel face[J]. IEEE Access, 2020, 9: 359–369.

    [28]

    LIU B, CHEN L, LI S C, et al. Three-dimensional seismic ahead-prospecting method and application in TBM tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(12): 04017090. doi: 10.1061/(ASCE)GT.1943-5606.0001785

    [29]

    LIU B, CHEN L, LI S C, et al. A new 3D observation system designed for a seismic ahead prospecting method in tunneling[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1547–1565. doi: 10.1007/s10064-017-1131-3

    [30]

    LI S C, REN Y X, LIU L B, et al. Reverse time migration of seismic forward-prospecting data in tunnels based on beamforming methods[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3261–3278. doi: 10.1007/s00603-019-01763-2

    [31] 邢占清, 李金霖, 符平, 等. 可灌性差、较难自稳地层隧洞开挖前快速灌浆成拱加固方法: CN111441775B[P]. 2019-07-16.

    XING Zhan-qing, LI Jin-lin, FU Ping, et al. Rapid Grouting and Arch Forming Reinforcement Method Before Tunnel Excavation in Poor Groutability and Difficult Self-Stable Strata: CN111441775B[P]. 2019-07-16. (in Chinese)

    [32] 王丽娟, 李凯, 张金接, 等. 膏浆平面裂隙动水注浆扩散模型研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3404–3411. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2015.htm

    WANG Li-juan, LI Kai, ZHANG Jin-jie, et al. Paste slurry planar fracture dynamic water grouting diffusion model research[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3404–3411. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2015.htm

    [33]

    FU P, HUANG L W, XING Z Q. Development and experimental research of a low-thermal asphalt material for grouting leakage blocking[J]. High Temperature Materials and Processes, 2020, 39(1): 433–446. doi: 10.1515/htmp-2020-0080

    [34]

    HUANG L W, XING Z Q, FU P. Test and analysis of grouting in the water-tight reconstruction project of a power station in Linhai City[J]. Journal of Coastal Research, 2020, 108(sp1): 301–307.

    [35] 周光新, 崔臻, 盛谦, 等. 活动断裂错动位移模式对隧洞变形与内力的影响研究[J]. 防灾减灾工程学报, 2021, 41(6): 1323–1330, 1349. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202106022.htm

    ZHOU Guang-xin, CUI Zhen, SHENG Qian, et al. Study on the deformation and internal force of the tunnel under the displacement pattern of the active fault zone[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(6): 1323–1330, 1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202106022.htm

    [36] 马亚丽娜, 崔臻, 盛谦, 等. 正断层错动对围岩–衬砌体系响应影响的离散–连续耦合模拟研究[J]. 岩土工程学报, 2020, 42(11): 2088–2097. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011018.htm

    MA Ya-li-na, CUI Zhen, SHENG Qian, et al. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088–2097. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011018.htm

    [37]

    CUI Z, SHENG Q, ZHANG G M, et al. Response and mechanism of a tunnel subjected to combined fault rupture deformation and subsequent seismic excitation[J]. Transportation Geotechnics, 2022, 34: 100749. doi: 10.1016/j.trgeo.2022.100749

    [38] 周光新, 盛谦, 崔臻, 等. 走滑断层错动影响下跨活断层铰接隧洞破坏机制模型试验[J]. 岩土力学, 2022, 43(1): 37–50. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202201004.htm

    ZHOU Guang-xin, SHENG Qian, CUI Zhen, et al. Model test of failure mechanism of tunnel with flexible joint crossing active fault under strike-slip fault dislocation[J]. Rock and Soil Mechanics, 2022, 43(1): 37–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202201004.htm

    [39] 周光新, 盛谦, 张传健, 等. 穿越走滑断层铰接隧洞抗错断设计参数作用机制研究[J]. 岩石力学与工程学报, 2022, 41(5): 941–953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205007.htm

    ZHOU Guang-xin, SHENG Qian, ZHANG Chuan-jian, et al. Study on the mechanism of design parameters of a tunnel with flexible joint crossing strike-slip faults[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 941–953. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205007.htm

    [40] 张肃, 丁秀丽, 黄书岭. 基于均匀设计–响应面–有限元法的软岩隧洞围岩与衬砌结构协同承载可靠性分析[J]. 长江科学院院报, 2021, 38(6): 79–85. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202106015.htm

    ZHANG Su, DING Xiu-li, HUANG Shu-ling. Reliability analysis of collaborative bearing capacity of surrounding rock and lining structure in soft rock tunnel based on uniform design, response surface, and finite element method[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(6): 79–85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202106015.htm

    [41] 王芳, 何勇军, 李宏恩. 基于系统动力学的引调水工程风险分析: 以倒虹吸工程为例[J]. 南水北调与水利科技(中英文), 2020, 18(3): 184–191. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202003018.htm

    WANG Fang, HE Yong-jun, LI Hong-en. Risk analysis of the water diversion project based on system dynamics: a case study of inverted siphon project[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(3): 184–191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202003018.htm

    [42] 牛广利, 李端有, 李天旸, 等. 基于云平台的大坝安全监测数据管理及分析系统研发与应用[J]. 长江科学院院报, 2019, 36(6): 161–165. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201906034.htm

    NIU Guang-li, LI Duan-you, LI Tian-yang, et al. Management and analysis system for dam safety monitoring data based on cloud platform: development and application[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(6): 161–165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201906034.htm

    [43] 钟登华, 林瀚文, 吴斌平, 等. 基于M5P-SVR故障预测的地下洞室施工仿真[J]. 水力发电学报, 2019, 38(4): 199–212. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201904019.htm

    ZHONG Deng-hua, LIN Han-wen, WU Bin-ping, et al. Simulations of underground cavern construction based on M5P-SVR failure prediction[J]. Journal of Hydroelectric Engineering, 2019, 38(4): 199–212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201904019.htm

    [44] 余佳. 考虑风险影响的复杂长距离引水隧洞施工仿真与优化研究[D]. 天津: 天津大学, 2019.

    YU Jia. Research on Construction Simulation and Optimization of Complex Long Distance Diversion Tunnel Considering the Impacts of Risks[D]. Tianjin: Tianjin University, 2019. (in Chinese)

    [45] 王晓玲, 禹旺, 刘长欣, 等. 考虑围岩传热的深埋引水隧洞TBM施工通风模拟[J]. 水力发电学报, 2019, 38(10): 1–13. doi: 10.11660/slfdxb.20191001

    WANG Xiao-ling, YU Wang, LIU Chang-xin, et al. TBM construction ventilation simulation for deep buried headrace tunnels considering heat transfer in surrounding rock[J]. Journal of Hydroelectric Engineering, 2019, 38(10): 1–13. (in Chinese) doi: 10.11660/slfdxb.20191001

    [46]

    WANG H B, LI C L, ZHAO L J. Experimental study on dynamic interaction between large U-shape aqueduct and water[J]. KSCE Journal of Civil Engineering, 2022, 26(3): 1203–1213. doi: 10.1007/s12205-021-0232-5

    [47] 王海波, 李春雷, 张昆航. U形渡槽内水体液面晃动对流作用试验研究[J]. 水利学报, 2020, 51(12): 1453–1461. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202012003.htm

    WANG Hai-bo, LI Chun-lei, ZHANG Kun-hang. Experimental study on the convective mass of sloshing liquid in a U-shaped aqueduct[J]. Journal of Hydraulic Engineering, 2020, 51(12): 1453–1461. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202012003.htm

    [48] 王海波, 李春雷, 朱璨, 等. 大型薄壁输水渡槽流固耦合振动台试验研究[J]. 水利学报, 2020, 51(6): 653–663. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202006003.htm

    WANG Hai-bo, LI Chun-lei, ZHU Can, et al. Experimental study of dynamic interaction between large thin wall aqueduct and water[J]. Journal of Hydraulic Engineering, 2020, 51(6): 653–663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202006003.htm

    [49] 徐瑞祥, 李炯, 尤岭, 等. 斜面导向式减隔震自复位支座: CN207110109U[P]. 2018-03-16.

    XU Rui-xiang, LI Jiong, YOU Ling, et al. Inclined Plane Guided Vibration Reduction and Isolation Self Resetting Bearing: CN207110109U[P]. 2018-03-16. (in Chinese)

    [50] 刘琪, 张传健, 颜天佑, 等. 敞开式TBM穿越断层破碎带时岩–机作用分析: 以滇中引水工程香炉山隧洞为例[J]. 人民长江, 2021, 52(10): 165–175. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202110025.htm

    LIU Qi, ZHANG Chuan-jian, YAN Tian-you, et al. Analysis on interaction between rock and opened TBM during excavation in fault fracture zone: case of Xianglushan Tunnel in Central Yunnan Water Diversion Project[J]. Yangtze River, 2021, 52(10): 165–175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202110025.htm

    [51] 张茂础, 崔臻, 盛谦, 等. 一种岩体结构面简易循环剪切仪: CN210571795U[P]. 2020-05-19.

    ZHANG Mao-chu, CUI Zheng, SHENG Qian, et al. A Simple Cyclic Shear Apparatus for Rock Structural Plane: CN210571795U[P]. 2020-05-19. (in Chinese)

    [52] 池建军, 刘登学, 丁秀丽, 等. 第三系泥岩隧洞围岩大变形成因及应对措施研究[J/OL]. 长江科学院院报: 1-11. [2022-05-25]. http://kns.cnki.net/detail/42.1171.TV.22020429.1836.029.html.

    CHI Jian-jun, LIU Deng-xue, DING Xiu-li, et al. Study on causes and countermeasures of large deformation in a tunnel with tertiary mudstone[J]. Journal of Yangtze River Scientific Research Institute: 1-11. [2022-05-25]. http://kns.cnki.net/detail/42.1171.TV.22020429.1836.029.html. (in Chinese)

  • 期刊类型引用(0)

    其他类型引用(2)

图(59)  /  表(2)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  61
  • PDF下载量:  96
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回