• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

大直径桩纵向振动广义轴对称连续圈层模型及其应用

刘鑫, 吴文兵, 王立兴, 刘浩, 梅国雄, 闻敏杰

刘鑫, 吴文兵, 王立兴, 刘浩, 梅国雄, 闻敏杰. 大直径桩纵向振动广义轴对称连续圈层模型及其应用[J]. 岩土工程学报, 2023, 45(9): 1916-1925. DOI: 10.11779/CJGE20220671
引用本文: 刘鑫, 吴文兵, 王立兴, 刘浩, 梅国雄, 闻敏杰. 大直径桩纵向振动广义轴对称连续圈层模型及其应用[J]. 岩土工程学报, 2023, 45(9): 1916-1925. DOI: 10.11779/CJGE20220671
LIU Xin, WU Wenbing, WANG Lixing, LIU Hao, MEI Guoxiong, WEN Minjie. Generalized axisymmetric continuous circle model for longitudinal vibration of large-diameter piles and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1916-1925. DOI: 10.11779/CJGE20220671
Citation: LIU Xin, WU Wenbing, WANG Lixing, LIU Hao, MEI Guoxiong, WEN Minjie. Generalized axisymmetric continuous circle model for longitudinal vibration of large-diameter piles and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1916-1925. DOI: 10.11779/CJGE20220671

大直径桩纵向振动广义轴对称连续圈层模型及其应用  English Version

基金项目: 

广东省基础与应用基础研究基金项目 2021A1515110547

国家自然科学基金项目 51878185

国家自然科学基金项目 52178321

浙江省自然科学基金杰出青年项目 LR21E080005

广西重点实验室开放课题项目 2021ZDK011

详细信息
    作者简介:

    刘鑫(1995—),男,博士,副教授,主要从事桩基动力学及其动态测试技术方面的教学和科研工作。E-mail: ericoliu@126.com

    通讯作者:

    吴文兵, E-mail: zjuwwb1126@163.com

  • 中图分类号: TU431

Generalized axisymmetric continuous circle model for longitudinal vibration of large-diameter piles and its application

  • 摘要: 现有针对大直径桩纵向振动特性的理论研究主要存在两点不足:①所用桩体模型无法充分考虑桩身内的三维波动效应;②研究重点集中于高频范围,缺乏对工程价值更为突出的低频振动特性的聚焦分析。针对此两点不足,提出了新型的大直径桩纵向振动广义轴对称连续圈层模型,将桩体看作三维连续介质,同时考虑桩身质点的竖向和径向位移,将桩周土沿径向进行圈层化处理,利用相邻圈层土和桩土接触面耦合关系得到竖向动荷载作用下桩顶复刚度解析解。在验证所提模型合理性基础上,利用其对大直径桩低频振动特性进行探讨分析,重点关注施工扰动效应的影响规律和机理,发现若干创新现象和有益结论,为大直径桩动力设计和承载特性分析提供了更为完备的理论基础。
    Abstract: There exist two main deficiencies in the existing theoretical researches about the longitudinal vibration characteristics of large-diameter piles: (1) The pile models applied fail to consider sufficiently the three-dimensional (3D) wave effects of the pile body. (2) The dynamic characteristics within the low frequency range lack essential attention, which is much more important in practice. Regarding the two deficiencies, an innovative theoretical model called the generalized axisymmetric continuous circle model for investigating the longitudinal vibration of large-diameter piles is proposed. The pile is treated as the 3D continuous medium and the surrounding soil is stratified into several zones along the radial direction. The analytical solutions for the complex stiffness of the pile top are obtained by applying the coupled conditions between the adjacent soil zones and those at the pile-soil interface. After its rationality is verified, the proposed model is used to study the vibration characteristics of the large-diameter piles within the low frequency range. The laws and mechanisms of the construction disturbance effects are specifically discussed, and several new phenomena and useful conclusions are obtained, which may support a much more complete theoretical basis for the dynamic design and bearing capacity analysis of large-diameter piles.
  • 图  1   计算模型示意图

    Figure  1.   Sketch of computational model

    图  2   不同模型所得动刚度

    Figure  2.   Dynamic stiffnesses obtained by different models

    图  3   不同模型所得动阻尼

    Figure  3.   Dynamic dampings obtained by different models

    图  4   桩顶不同径向位置处的频域位移响应

    Figure  4.   Displacement responses of pile top points with different radial positions in frequency domain

    图  5   径向圈层划分数量影响分析

    Figure  5.   Influence analysis of radially stratified number

    图  6   硬化效应影响分析

    Figure  6.   Influence analysis of hardening effects

    图  7   软化效应影响分析

    Figure  7.   Influence analysis of softening effects

    图  8   扰动范围影响分析

    Figure  8.   Influence analysis of disturbance range

    图  9   桩径影响分析

    Figure  9.   Influence analysis of pile diameter

    表  1   不同硬化程度时各特征频率值

    Table  1   Feature frequency values under different harding conditions

    Gs1/MPa f1/Hz f2/Hz f3/Hz
    56 4.7 11.5
    66 4.7 11.5 12.4
    76 4.7 11.5 13.3
    86 4.7 11.5 14.2
    下载: 导出CSV

    表  2   不同软化程度时各特征频率值

    Table  2   Feature frequency values under different softening conditions

    Gs20/MPa f1/Hz f2/Hz f3/Hz
    56 4.7 11.5
    66 5.1 11.5 12.4
    76 5.5 11.5 13.3
    86 4.7 11.5 14.2
    下载: 导出CSV
  • [1]

    NOVAK M, HAN Y C. Impedances of soil layer with boundary zone[J]. Journal of Geotechnical Engineering, 1990, 116(6): 1008-1014. doi: 10.1061/(ASCE)0733-9410(1990)116:6(1008)

    [2]

    NOVAK M, NOGAMI T, ABOUL-ELLA F. Dynamic soil reactions for plane strain case[J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 953-959. doi: 10.1061/JMCEA3.0002392

    [3]

    LAKSHMANAN N, MINAI R. Dynamic soil reactions in radially non-homogeneous soil media[J]. Bulletin of the Disaster Prevention Research Institute, 1981, 31(2): 79-114.

    [4]

    VELETSOS A S, DOTSON K W. Vertical and torsional vibration of foundations in inhomogeneous media[J]. Journal of Geotechnical Engineering, 1988, 114(9): 1002-1021. doi: 10.1061/(ASCE)0733-9410(1988)114:9(1002)

    [5]

    EL NAGGAR M H, NOVAK M. Analytical model for an innovative pile test[J]. Canadian Geotechnical Journal, 1992, 29(4): 569-579. doi: 10.1139/t92-064

    [6]

    EL NAGGAR M H, NOVAK M. Non & hyphen; Linear model for dynamic axial pile response[J]. Journal of Geotechnical Engineering, 1994, 120(2): 308-329. doi: 10.1061/(ASCE)0733-9410(1994)120:2(308)

    [7]

    EL NAGGAR M H. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering and Mechanics, 2000, 10(4): 299-312. doi: 10.12989/sem.2000.10.4.299

    [8] 王奎华, 杨冬英, 张智卿. 基于复刚度传递多圈层平面应变模型的桩动力响应研究[J]. 岩石力学与工程学报, 2008, 27(4): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804026.htm

    WANG Kuihua, YANG Dongying, ZHANG Zhiqing. Study on dynamic response of pile based on complex stiffness transfer model of radial multizone plane strain[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 825-831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804026.htm

    [9] 周铁桥, 王奎华, 谢康和, 等. 轴对称径向非均质土中桩的纵向振动特性分析[J]. 岩土工程学报, 2005, 27(6): 720-725. doi: 10.11779/CJGE201808008

    ZHOU Tieqiao, WANG Kuihua, XIE Kanghe, et al. Vertical vibration analysis of piles in radial heterogeneous soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 720-725. (in Chinese) doi: 10.11779/CJGE201808008

    [10] 吴文兵, 谢帮华, 黄生根, 等. 考虑挤土效应时楔形桩纵向振动阻抗研究[J]. 地震工程学报, 2015, 37(4): 1042-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201504022.htm

    WU Wenbing, XIE Banghua, HUANG Shenggen, et al. Vertical dynamic impedance of tapered piles considering compacting effects[J]. China Earthquake Engineering Journal, 2015, 37(4): 1042-1048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201504022.htm

    [11] 陈凡, 王仁军. 尺寸效应对基桩低应变完整性检测的影响[J]. 岩土工程学报, 1998, 20(5): 92-96. http://www.cgejournal.com/cn/article/id/10201

    CHEN Fan, WANG Renjun. Influence of size effect on low strain integrity test of foundation pile[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 92-96. (in Chinese) http://www.cgejournal.com/cn/article/id/10201

    [12]

    CHAI H Y, PHOON K K, ZHANG D J. Effects of the source on wave propagation in pile integrity testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1200-1208. doi: 10.1061/(ASCE)GT.1943-5606.0000272

    [13] 荣垂强, 赵晓华. 基桩反射波法三维干扰成因与最佳采样方法研究[J]. 岩土工程学报, 2017, 39(9): 1731-1738. doi: 10.11779/CJGE201709023

    RONG Chuiqiang, ZHAO Xiaohua. Three-dimensional interference sources and optimal sampling location of piles utilizing reflected wave method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1731-1738. (in Chinese) doi: 10.11779/CJGE201709023

    [14] 崔春义, 梁志孟, 许成顺, 等. 基于轴对称连续介质模型的径向非均质土中大直径管桩纵向振动特性研究[J]. 岩石力学与工程学报, 2022, 41(5): 1031-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205014.htm

    CUI Chunyi, LIANG Zhimeng, XU Chengshun, et al. Research of longitudinal vibration characteristics of large-diameter pipe piles in radially heterogeneous soils based on axisymmetric continuum model[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 1031-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205014.htm

    [15] 刘汉龙, 丁选明. 现浇薄壁管桩在低应变瞬态集中荷载作用下的动力响应解析解[J]. 岩土工程学报, 2007, 29(11): 1611-1617. http://www.cgejournal.com/cn/article/id/12660

    LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617. (in Chinese) http://www.cgejournal.com/cn/article/id/12660

    [16]

    DING X M, LIU H L, KONG G Q, et al. Time-domain analysis of velocity waves in a pipe pile due to a transient point load[J]. Computers and Geotechnics, 2014, 58: 101-116.

    [17]

    DING X M, LIU H L, LIU J Y, et al. Wave propagation in a pipe pile for low-strain integrity testing[J]. Journal of Engineering Mechanics, 2011, 137(9): 598-609. http://www.onacademic.com/detail/journal_1000036870595610_fa87.html

    [18]

    ZHENG C J, KOURETZIS G P, DING X M, et al. Three-dimensional effects in low-strain integrity testing of piles: analytical solution[J]. Canadian Geotechnical Journal, 2015, 53(2): 225-235.

    [19]

    ZHENG C J, LIU H L, DING X M, et al. Non-axisymmetric response of piles in low-strain integrity testing[J]. Géotechnique, 2017, 67(2): 181-186.

    [20]

    ZHENG C J, DING X M, KOURETZIS G P, et al. Three-dimensional propagation of waves in piles during low-strain integrity tests[J]. Géotechnique, 2018, 68(4): 358-363.

    [21]

    MENG K, CUI C Y, LIANG Z M, et al. A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects[J]. Computers and Geotechnics, 2020, 128: 103840.

    [22]

    LIU X, EL NAGGAR M H, WANG K, et al. Theoretical analysis of three-dimensional effect in pile integrity test[J]. Computers and Geotechnics, 2020, 127: 103765. http://www.sciencedirect.com/science/article/pii/S0266352X20303281

    [23]

    LIU X, EL NAGGAR M H, WANG K H, et al. Three-dimensional axisymmetric analysis of pile vertical vibration[J]. Journal of Sound and Vibration, 2021, 494: 115881.

    [24] 王奎华, 阙仁波, 夏建中. 考虑土体真三维波动效应时桩的振动理论及对近似理论的校核[J]. 岩石力学与工程学报, 2005, 24(8): 1362-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200508018.htm

    WANG Kuihua, QUE Renbo, XIA Jianzhong. Theory of pile vibration considering true three-dimensional wave effect of soil and its check on the approximate theories[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1362-1370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200508018.htm

图(9)  /  表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  32
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 网络出版日期:  2023-03-05
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回