Deformation characteristics of joints of immersed tube tunnels under coupling loads of back silting - tidal cycle
-
摘要: 重点研究了循环荷载耦合下沉管隧道接头的变形特征。通过建立管-土相互作用模型,将隧道简化为Timoshenko梁模型,将地基简化为Kerr地基模型,同时考虑基床系数随时间变化,建立管节-接头理论模型,分析接头处转角和挠度差。对比荷载叠加和荷载耦合两种不同加载方式下沉管隧道接头变形问题,讨论淤积荷载引发的结构变形在总变形中的贡献比例,以及适合分析运维期接头变形问题的理论解析方法。与ABAQUS数值计算结果进行比较,说明方法的适用性。以甬江沉管隧道实测数据对比分析表明:循环荷载耦合作用下对沉管隧道的动力响应影响显著,大于由单个荷载引起结构变形的叠加。淤积荷载引起的沉管结构变形占据耦合荷载导致变形的75%~125%,提出的理论模型可以很好地分析实测沉降结果,验证了提出理论模型的有效性。Abstract: The proposed method focuses on the deformation characteristics of joints of immersed tube tunnels under cyclic load coupling. By establishing the tunnel-soil interaction model, the tunnel is simplified to the Timoshenko beam model, and the foundation is simplified to the Kerr foundation model. At the same time, considering the change of the subgrade coefficients with time, the theoretical model for the element-joint is established to analyze the transfer angle and deflection of the joints. By comparing the joint deformations of immersed tube tunnels under two different loading modes, namely load superposition and load coupling, the contribution proportion of structural deformation caused by back silting loads in the total deformation is discussed, and a theoretical analytical method suitable for analyzing the joint deformations during operation and maintenance is proposed. A comparison with the numerical results of ABAQUS demonstrates the applicability of the proposed method. By comparing with the measured data of Yongjiang immersed tube tunnel, it is shown that the dynamic response of the immersed tube tunnel is significantly affected by the cyclic load coupling, which is greater than the superposition of structural deformation caused by the single load. The deformation of immersed structure caused by the back silting loads accounts for 75%~125% of the deformation caused by the cyclic load coupling. The proposed theoretical model can well analyze the measured settlement results, which verifies the validity of the proposed theoretical model.
-
-
-
[1] ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al. Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067-1090. doi: 10.1061/(ASCE)1090-0241(2007)133:9(1067)
[2] WANG Y N, ZHOU H Z, MIN X H. Modelling the performance of immersed tunnel via considering variation of subsoil property[J]. Ocean Engineering, 2022, 266: 113114. doi: 10.1016/j.oceaneng.2022.113114
[3] HU Z N, XIE Y L, XU G P, et al. Segmental joint model tests of immersed tunnel on a settlement platform: a case study of the Hongkong-Zhuhai-Macao Bridge[J]. Tunnelling and Underground Space Technology, 2018, 78: 188-200. doi: 10.1016/j.tust.2018.03.020
[4] 邵俊江, 李永盛. 潮汐荷载引起沉管隧道沉降计算方法[J]. 同济大学学报(自然科学版), 2003, 31(6): 657-662. doi: 10.3321/j.issn:0253-374X.2003.06.006 SHAO Junjiang, LI Yongsheng. Calculation methods for settlements of immersed tunnels induced by tidal load[J]. Journal of Tongji University (Natural Science), 2003, 31(6): 657-662. (in Chinese) doi: 10.3321/j.issn:0253-374X.2003.06.006
[5] 谢雄耀, 王培, 李永盛, 等. 甬江沉管隧道长期沉降监测数据及有限元分析[J]. 岩土力学, 2014, 35(8): 2314-2324. doi: 10.16285/j.rsm.2014.08.026 XIE Xiongyao, WANG Pei, LI Yongsheng, et al. Monitoring data and finite element analysis of long term settlement of Yongjiang immersed tunnel[J]. Rock and Soil Mechanics, 2014, 35(8): 2314-2324. (in Chinese) doi: 10.16285/j.rsm.2014.08.026
[6] GRANTZ W. Immersed tunnel settlements Part 1: nature of settlements[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 195-201. doi: 10.1016/S0886-7798(01)00039-6
[7] GRANTZ W. Immersed tunnel settlements Part 2: case histories[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 203-210. doi: 10.1016/S0886-7798(01)00040-2
[8] ODA Y, ITO K, YIM S C. Current forecast for tunnel-element immersion in the bosphorus strait, turkey[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2009, 135(3): 108-119.
[9] 于洪丹, 陈卫忠, 郭小红, 等. 潮汐对跨海峡隧道衬砌稳定性影响研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2905-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1049.htm YU Hongdan, CHEN Weizhong, GUO Xiaohong, et al. Research on effect of tide on stabilities of channel tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2905-2914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1049.htm
[10] HU Z N, XIE Y L, XU G P, et al. Advantages and potential challenges of applying semi-rigid elements in an immersed tunnel: a case study of the Hong Kong-Zhuhai-Macao Bridge[J]. Tunnelling and Underground Space Technology, 2018, 79: 143-149. doi: 10.1016/j.tust.2018.05.004
[11] 周桓竹, 寇晓强, 王延宁. 潮汐作用下的沉管隧道竖向位移计算[J]. 岩土力学, 2021, 42(10): 2785-2794, 2807. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110018.htm ZHOU Huanzhu, KOU Xiaoqiang, WANG Yanning. Vertical displacement calculation of immersed tube tunnel under tidal load[J]. Rock and Soil Mechanics, 2021, 42(10): 2785-2794, 2807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110018.htm
[12] 王延宁, 周桓竹, 俞缙. 沉管隧道运维期回淤影响下的长期沉降模型[J]. 岩土工程学报, 2023, 45(2): 292-300. doi: 10.11779/CJGE20211560 WANG Yanning, ZHOU Huanzhu, YU Jin. Long-term settlement model for immersed tube tunnels under back silting loads during operation and maintenance periods[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 292-300. (in Chinese) doi: 10.11779/CJGE20211560
[13] WU H N, SHEN S L, YANG J, et al. Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2018, 78: 168-177.
[14] 李瑞遐. 应用微分方程[M]. 上海: 华东理工大学出版社, 2005. LI Ruixia. Applying Differential Equation[M]. Shanghai: East China University of Science and Technology Press, 2005. (in Chinese)
[15] 刘建文, 施成华, 雷明锋, 等. 基坑开挖对下卧地铁隧道影响的解析计算方法[J]. 中南大学学报(自然科学版), 2019, 50(9): 2215-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909018.htm LIU Jianwen, SHI Chenghua, LEI Mingfeng, et al. Analytical method for influence analysis of foundation pit excavation on underlying metro tunnel[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2215-2225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909018.htm
[16] ZHANG D M, HUANG Z K, LI Zi-li, et al. Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath[J]. Computers and Geotechnics, 2019, 108(5): 197-211.
[17] 边学成. 高速列车运动荷载作用下地基和隧道的动力响应分析[D]. 杭州: 浙江大学, 2005. BIAN Xuecheng. Dynamic Analyses of Ground and Tunnel Responses Due to High-Speed Train Moving Loads[D]. Hangzhou: ZheJiang University, 2005. (in Chinese)
[18] TALMON A M, BEZUIJEN A. Calculation of longitudinal bending moment and shear force for Shanghai Yangtze River Tunnel: application of lessons from Dutch research[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2013, 35(4): 161-171.
[19] 廖少明. 隧道纵向剪切效应的简化弹性地基柱壳理论解析[J]. 岩石力学与工程学报, 2006, 25(7): 1486-1493. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607028.htm LIAO Shaoming. Theoretic analysis of simplified cylindrical shell on elastic foundation for tunnel longitudinal shear effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1486-1493. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607028.htm
[20] WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2015, 50: 317-323.
[21] LI P, SONG E X. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input[J]. Computers and Geotechnics, 2015, 63: 229-243.
[22] YU H T, XIAO W H, YUAN Y, et al. Seismic mitigation for immersion joints: design and validation[J]. Tunnelling and Underground Space Technology, 2017, 67: 39-51.
[23] XIAO W H, YU H T, YUAN Y, et al. Compression-bending behavior of a scaled immersion joint[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2015, 49: 426-437.
[24] 魏纲, 陆世杰. 考虑管土效应的潮汐荷载引起沉管隧道管节沉降研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 4329-4337. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2055.htm WEI Gang, LU Shijie. Research on settlement of immersed tunnel elements under tidal load with consideration of element-soil effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4329-4337. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2055.htm
[25] LI P, DU S J, SHEN S L, et al. Timoshenko beam solution for the response of existing tunnels because of tunneling underneath[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2016, 40(5): 766-784.
[26] 黄栩, 黄宏伟, 张冬梅. 开挖卸荷引起下卧已建盾构隧道的纵向变形研究[J]. 岩土工程学报, 2012, 34(7): 1241-1249. http://www.cgejournal.com/cn/article/id/14632 HUANG Xu, HUANG Hongwei, ZHANG Dongmei. Longitudinal deflection of existing shield tunnels due to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1241-1249. (in Chinese) http://www.cgejournal.com/cn/article/id/14632
[27] 余子烨, 翟国君, 梅国雄, 等. 循环荷载作用下连续排水边界双层土一维固结[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202101017.htm YU Ziye, ZHAI Guojun, MEI Guoxiong, et al. One-dimensional consolidation of double-layered soft soils with continuous drainage boundaries under cyclic loading[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202101017.htm
-
期刊类型引用(3)
1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 . 百度学术
2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 . 百度学术
其他类型引用(13)
-
其他相关附件