Seepage analysis based on weak finite element method
-
摘要: 在坝、闸和堤防等水工建筑物的设计和运行管理中,渗流计算占有非常重要的地位。目前渗流分析的方法以一般有限元方法为主。在渗流分析时往往希望通过加密网格来追求更高精度的数值结果,但是由于一般有限元法属于协调有限元方法,它不适合处理混合剖分网格,加密网格容易导致计算格式不稳定、计算结果不收敛。而弱有限元方法是一种非协调有限元方法,用弱函数的弱梯度算子替代一般有限元方法变分式中的经典梯度算子,并在变分式中增加稳定子项,保证了计算格式的绝对稳定性,并且它适用于混合网格。对于同一剖分网格,弱有限元法的总体代数方程组的自由度远远比一般有限元方法的要大很多,为了降低弱有限元法的自由度,探讨根据弱有限元方法适用于混合剖分网格的特点,采用有针对性的混合剖分网格,运用弱有限元法求解渗流自由面和进行有防渗帷幕的闸基渗流分析,数值结果表明弱有限元方法能灵活处理混合剖分网格,并且计算结果具有高精度。Abstract: In the design and operation management of hydraulic structures such as dams, gates and embankments, the seepage calculation plays a very important role. The current methods for seepage analysis are mainly based on the general finite element method. It is often hoped, by refining the mesh, to pursue the calculated results with higher-precision in the seepage analysis. However, the general finite element method, which belongs to the coordinated finite element method, cannot handle hybrid grids, and the refined mesh may lead to unstable calculation formats and the divergence of the calculated results. The weak finite element method is a non-coordinated one, which replaces the classical gradient operator in the variational formula for the general finite element method with the weak gradient operator of the weak function, and adds a stable sub-term in the variational formula, to obtain an absolute stability of the calculation format, and it can handle hybrid grids. For the same mesh grid, the degree of freedom of the overall algebraic equations for the weak finite element method is much larger than that of the general finite element method. In order to reduce the degree of freedom of the weak finite element method, the targeted mixed meshing grid is used to establish the weak finite element method which is used to solve the free surface of seepage and to analyze the seepage field of the gate foundation with anti-seepage curtain. The numerical simulation shows that the weak finite element method can be used to process flexibly hybrid grids, and it is of high accuracy.
-
Keywords:
- weak finite element method /
- hybrid grid /
- seepage /
- free surface /
- brake base
-
-
表 1 剖分单元信息
Table 1 Information of elements
单元编号 单元类型 节点编号 1 3 3 2 4 2 3 3 1 2 3 4 3 4 5 6 4 5 3 6 7 8 1 表 2 节点坐标信息
Table 2 Information of node coordinates
节点 1 2 3 4 5 6 7 8 x 1 2 1 2 2 1 0 0 y 0 0 1 1 2 2 2 0 表 3 计算结果对比Ⅰ
Table 3 Comparison of calculated results Ⅰ
横坐标 解析解 FEM 误差1 WG 误差2 0 10.00 10.00 0.00 10.00 0.00 1 9.59 9.73 0.14 9.62 0.03 2 9.17 9.39 0.22 9.26 0.09 3 8.72 8.99 0.27 8.79 0.07 4 8.25 8.53 0.28 8.30 0.05 5 7.75 8.03 0.28 7.78 0.03 6 7.21 7.46 0.25 7.23 0.02 7 6.63 6.83 0.20 6.63 0.00 8 6.00 6.11 0.11 6.04 0.04 9 5.29 5.21 -0.08 5.34 0.05 10 4.47 4.50 0.03 4.50 0.03 表 4 计算结果对比Ⅱ
Table 4 Comparison of calculated results Ⅱ
横坐标 解析解 WG 误差 0 10.00 10.00 0.00 1 9.59 9.59 0.00 2 9.17 9.18 0.01 3 8.72 8.77 0.05 4 8.25 8.23 -0.02 5 7.75 7.74 -0.01 6 7.21 7.16 -0.05 7 6.63 6.61 -0.02 8 6.00 6.00 0.00 9 5.29 5.34 0.05 10 4.47 4.50 0.03 表 5 水力梯度值
Table 5 Values of hydraulic gradient
防渗墙
深/m防渗墙底端处水力梯度 闸基出口处
水力梯度5 0.323 0.332 10 0.333 0.262 15 0.358 0.190 -
[1] BASSI F, REBAY S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279. doi: 10.1006/jcph.1996.5572
[2] COCKBURN B, SHU C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463. doi: 10.1137/S0036142997316712
[3] COCKBURN B, GOPALAKRISHNAN J, LAZAROV R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[J]. SIAM Journal on Numerical Analysis, 2009, 47(2): 1319-1365. doi: 10.1137/070706616
[4] 何朝葵, 速宝玉, 盛金昌. 稳定渗流分析的局部间断伽辽金有限元法[J]. 河海大学学报(自然科学版), 2012, 40(2): 206-210. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201202018.htm HE Zhaokui, SU Baoyu, SHENG Jinchang. Local discontinuous Galerkin finite element method for steady seepage analysis[J]. Journal of Hohai University (Natural Sciences), 2012, 40(2): 206-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201202018.htm
[5] WANG J P, YE X. A weak Galerkin finite element method for second-order elliptic problems[J]. Journal of Computational and Applied Mathematics, 2013, 241: 103-115. doi: 10.1016/j.cam.2012.10.003
[6] 王军平, 叶秀, 张然. 弱有限元方法简论[J]. 计算数学, 2016, 38(3): 289-308. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm WANG Junping, YE Xiu, ZHANG Ran. Basics of weak Galerkin finite element methods[J]. Mathematica Numerica Sinica, 2016, 38(3): 289-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm
[7] 朱弘泽, 林莉, 周晨光, 等. 弱Galerkin有限元法的稳定性[J]. 吉林大学学报(理学版), 2018, 56(6): 1427-1430. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201806025.htm ZHU Hongze, LIN Li, ZHOU Chenguang, et al. Stability of weak Galerkin finite element method[J]. Journal of Jilin University (Science Edition), 2018, 56(6): 1427-1430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201806025.htm
[8] WANG J P, YE X. A weak Galerkin finite element method for the stokes equations[J]. Advances in Computational Mathematics, 2016, 42(1): 155-174. doi: 10.1007/s10444-015-9415-2
[9] MU L, WANG J P, YE X, et al. A numerical study on the weak Galerkin method for the Helmholtz equation[J]. Communications in Computational Physics, 2014, 15(5): 1461-1479. doi: 10.4208/cicp.251112.211013a
[10] MU L, WANG J P, YE X, et al. A weak Galerkin finite element method for the maxwell equations[J]. Journal of Scientific Computing, 2015, 65(1): 363-386. doi: 10.1007/s10915-014-9964-4
[11] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm ZHANG Ran. Weak Galerkin finite element method for linear elasticity problems[J]. Mathematica Numerica Sinica, 2020, 42(1): 1-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm
[12] 张然, 翟起龙. 偏微分方程特征值问题的弱有限元方法[J]. 中国科学: 数学, 2019, 49(12): 1979-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201912015.htm ZHANG Ran, ZHAI Qilong. Weak Galerkin finite element methods for PDE eigenvalue problems[J]. Scientia Sinica (Mathematica), 2019, 49(12): 1979-1994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201912015.htm
[13] 吴梦喜, 张学勤. 有自由面渗流分析的虚单元法[J]. 水利学报, 1994, 25(8): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB408.009.htm WU Mengxi, ZHANG Xueqin. Imaginary element method for numerical analysis of seepage with free surface[J]. Journal of Hydraulic Engineering, 1994, 25(8): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB408.009.htm
[14] 速宝玉, 沈振中, 赵坚. 用变分不等式理论求解渗流问题的截止负压法[J]. 水利学报, 1996, 27(3): 22-29, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB603.003.htm SU Baoyu, SHEN Zhenzhong, ZHAO Jian. The cut-off negative pressure method for soling filtration problems based on the theory of variational inequalities[J]. Journal of Hydraulic Engineering, 1996, 27(3): 22-29, 35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB603.003.htm
[15] 王贤能, 黄润秋. 有自由面渗流分析的高斯点法[J]. 水文地质工程地质, 1997, 24(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG706.000.htm WANG Xianneng, HUANG Runqiu. Gavss point method for seepage analysis with free surface[J]. Hydrogeology and Engineering Geology, 1997, 24(6): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG706.000.htm
[16] 党发宁, 王晓章, 郑忠安, 等. 有自由面渗流分析的变单元渗透系数法[J]. 西北水力发电, 2004, 20(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SXFD200401001.htm DANG Faning, WANG Xiaozhang, ZHENG Zhongan, et al. Variable element seepage coefficient method for seepage numerical analysis with free surface[J]. Journal of NOTHUCEST RYDOOELECTNICPOWER, 2004, 20(1): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXFD200401001.htm
[17] 孙伟建, 侯兴民, 李远东, 等. 基于虚单元法求解渗流自由面的曲线拟合法[J]. 水力发电, 2016, 42(11): 50-53, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201611013.htm SUN Weijian, HOU Xingmin, LI Yuandong, et al. A curve fitting method based on virtual element method for solving seepage free surface[J]. Water Power, 2016, 42(11): 50-53, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201611013.htm
-
期刊类型引用(4)
1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 . 百度学术
3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 . 百度学术
4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 . 百度学术
其他类型引用(15)
-
其他相关附件