• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高岭土-膨润土化学渗透膜效应试验及微观机理分析

张志红, 杨灏闻, 郑九州

张志红, 杨灏闻, 郑九州. 高岭土-膨润土化学渗透膜效应试验及微观机理分析[J]. 岩土工程学报, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617
引用本文: 张志红, 杨灏闻, 郑九州. 高岭土-膨润土化学渗透膜效应试验及微观机理分析[J]. 岩土工程学报, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617
ZHANG Zhihong, YANG Haowen, ZHENG Jiuzhou. Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617
Citation: ZHANG Zhihong, YANG Haowen, ZHENG Jiuzhou. Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617

高岭土-膨润土化学渗透膜效应试验及微观机理分析  English Version

详细信息
    作者简介:

    张志红(1976—),博士,教授,主要从事环境岩土工程领域研究工作。E-mail: zhangzh2002@126.com

  • 中图分类号: TU431

Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite

  • 摘要: 黏土类材料固有的半透膜特性能够显著延缓污染物扩散,对各类堆场防渗屏障服役性能的高效评估具有重要的意义。采用自制的刚性壁膜效应试验装置,开展了不同膨润土掺量的高岭土-膨润土(K-B)防渗材料的化学渗透膜性能试验及SEM电镜扫描试验,确定了5%~60%膨润土掺量的K-B试样化学渗透效率系数的变化规律,从微观角度定量研究并揭示了膜效应行为的影响机理。结果表明:随着膨润土掺量的增加,化学渗透效率系数的变化趋势呈现分阶段性规律,即缓慢增加(< 30%)、急剧增加(30%~40%)和稳定(> 40%)3个阶段,膨润土掺量从5%增到60%时,相应的化学渗透效率系数由0.002提高至0.197。通过电镜扫描发现,膨润土掺量的增加导致K-B试样孔隙结构变化,大孔数量减小,小孔数量逐渐增加,孔隙周长增大,表明孔隙数量和孔隙周长的改变是导致K-B化学渗透膜效应随膨润土掺量而变化的微观原因。
    Abstract: The semipermeable membrane behavior of clay materials can significantly delay contaminant diffusion, which is of great importance to evaluating the service performance of barriers in various landfills effectively. Using the self-made rigid wall test device, a series of chemico-osmotic tests on the kaolin-bentonite (K-B) mixtures with bentonite content (5%~60%) are carried out, and the variation trends of chemico-osmotic efficiency coefficients of K-B specimens are determined. Meanwhile, the influence mechanism of membrane effect behavior is revealed through the scanning electron microscope. The results show that the change process of chemico-osmotic efficiency coefficient can be divided into three stages, slow increase (< 30%), sharp increase (30%~40%) and steady condition (> 40%). When the content of bentonite increases from 5% to 60%, the corresponding chemico-osmotic efficiency coefficient increases from 0.002 to 0.197. In addition, the increase of bentonite content causes the pore structure change of K-B specimens, the number of large holes decreases, and the number of small holes gradually increases. Furthermore, the aperture perimeter of holes increases, indicating that the variation of pore number and aperture perimeter is the internal reason for leading to the change of chemico-osmotic membrane behavior with bentonite content.
  • 图  1   试验装置示意图

    Figure  1.   Schematic diagram of test apparatus

    图  2   化学渗透压差与时间的关系

    Figure  2.   Relationship between chemical osmotic pressure and time

    图  3   化学渗透效率系数与膨润土掺量的关系

    Figure  3.   Relationship between chemico-osmotic efficiency coefficient and bentonite content

    图  4   K-B试样2000倍扫描电镜图像

    Figure  4.   SEM images of K-B specimens under 2000x

    图  5   化学渗透效率系数、孔隙率与膨润土掺量的关系

    Figure  5.   Relationship among chemico-osmotic efficiency coefficient, porosity and bentonite content

    图  6   孔隙周长、化学渗透效率系数与膨润土掺量的关系

    Figure  6.   Relationship among perimeter of pore size, chemico- osmotic efficiency coefficient and bentonite content

    图  7   化学渗透效率系数与膨润土掺量的关系

    Figure  7.   Relationship between chemico-osmotic coefficient and bentonite content

    表  1   高岭土和膨润土基本参数

    Table  1   Parameters of kaolin and bentonite

    指标 高岭土 膨润土
    含水率/% 0.15 6.7
    液限/% 60.4 234
    塑限/% 9.8 194
    Gs 2.84 2.87
    pH 7.14 10.52
    膨胀指数/(mL·2g-1) 1.5 25.0
    阳离子交换量meq/(100 g-1) 0.91 62.84
    下载: 导出CSV

    表  2   K-B试样孔隙率

    Table  2   Porosities of K-B specimens

    膨润土掺量/% SEM定量化孔隙率/%
    5 61.6
    10 61.1
    15 59.8
    20 56.4
    30 51.3
    40 48.5
    50 48.5
    60 48.3
    下载: 导出CSV
  • [1]

    SHACKELFORD C D, SCALIA J. Semipermeable membrane behavior in bentonite-based barriers: Past, present, and future[C]// GeoVancouver 2016, 69th Canadian Geotechnical Society. Richmond, BC, Canada, 2016.

    [2]

    SCALIA J, BOHNHOFF G L, SHACKELFORD C D, et al. Enhanced bentonites for containment of inorganic waste leachates by GCLs[J]. Geosynthetics International, 2018, 25(4): 392-411. doi: 10.1680/jgein.18.00024

    [3]

    SHACKELFORD C D, LEE J M. The destructive role of diffusion on clay membrane behavior[J]. Clays and Clay Minerals, 2003, 51(2): 186-196. doi: 10.1346/CCMN.2003.0510209

    [4]

    HENNING J T, EVANS J C, SHACKELFORD C D. Membrane behavior of two backfills from field-constructed soil-bentonite cutoff walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1243-1249. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1243)

    [5]

    DOMINIJANNI A, MANASSERO M. Modelling Osmosis and Solute Transport Through Clay Membrane Barriers[M]. Reston, Va: Waste Containment and Remediation, Geotech Spec Publ, ASCE, 2005: 1-12.

    [6]

    SHACKELFORD C. Membrane behavior in engineered bentonite-based containment barriers: State of the art[C]// Proceedings of the International Symposium on Coupled Phenomena in Environmental Geotechnics. Torino, Italy, 2013.

    [7] 傅贤雷, 杜延军, 沈胜强, 等. PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3669-3675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm

    FU Xianlei, DU Yanjun, SHEN Shengqiang, et al. Chemico-osmotic membrane behavior and diffusive properties of PAC amended bentonite/sand vertical cutoff wall backfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3669-3675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm

    [8] 李双杰, 伍浩良, 傅贤雷, 等. 氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应[J]. 岩土工程学报, 2022, 44(6): 1078-1086. doi: 10.11779/CJGE202206012

    LI Shuangjie, WU Haoliang, FU Xianlei, et al. Experimental study on chemico- osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1078-1086. (in Chinese) doi: 10.11779/CJGE202206012

    [9]

    VAN I P O, PASQUALINI E. Consolidation, Contaminant Transport and Chemico-Osmotic Effects in Liner Materials[D]. Ancona: University of Ancona, 2002.

    [10]

    KANG J B, SHACKELFORD C D. Membrane behavior of compacted clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1368-1382. doi: 10.1061/(ASCE)GT.1943-5606.0000358

    [11]

    SAINDON R, WHITWORTH T M. Hyperfiltration of nacl solutions using a simulated clay/sand mixture at low compaction pressures[J]. Aquatic Geochemistry, 2005, 11(4): 433-444. doi: 10.1007/s10498-005-2041-8

    [12]

    TANG Q, KATSUMI T, INUI T, et al. Membrane behavior of bentonite-amended compacted clay[J]. Soils and Foundations, 2014, 54(3): 329-344. doi: 10.1016/j.sandf.2014.04.019

    [13] 周盈. 反渗透条件下黏性土中溶质运移模型及黏土膜效率系数的试验研究[D]. 南京: 南京大学, 2017.

    ZHOU Ying. A Simplified Solute Transport Model and Experimental Study of the Efficiency Coefficient of Clay Membranes in A Reverse Osmosis System[D]. Nanjing: Nanjing University, 2017. (in Chinese)

    [14]

    SHACKELFORD C D. Membrane behavior in geosynthetic clay liners[M]// Geo-Frontiers 2011: Advances in Geotechnical Engineering, ASCE, Reston, Va, 2011: 1961-1970.

    [15]

    GROENEVELT P H, ELRICK D E. Coupling phenomena in saturated homo-ionic montmorillonite: Ⅱ theoretical[J]. Soil Science Society of America Journal, 1976, 40(6): 820-823. doi: 10.2136/sssaj1976.03615995004000060011x

    [16] 高国瑞. 膨胀土的微结构和膨胀势[J]. 岩土工程学报, 1984(2): 40-48. http://www.cgejournal.com/cn/article/id/8782

    GAO Guorui. Microstructure and swelling potential of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 1984(2): 40-48. (in Chinese) http://www.cgejournal.com/cn/article/id/8782

    [17] 张平, 房营光, 闫小庆, 等. 不同干燥方法对重塑膨润土压汞试验用土样的影响试验研究[J]. 岩土力学, 2011, 32(增刊1): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1070.htm

    ZHANG Ping, FANG Yingguang, YAN Xiaoqing, et al. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. Rock and Soil Mechanics, 2011, 32(S1): 388-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1070.htm

    [18] 何俊, 施建勇. 膨润土微观结构SEM观察中的表观孔隙率[J]. 河海大学学报(自然科学版), 2007, 35(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200702023.htm

    HE Jun, SHI Jianyong. Apparent porosity in SEM observation of microstructure of bentonite[J]. Journal of Hohai University (Natural Sciences), 2007, 35(2): 220-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200702023.htm

    [19] 刘睿, 杜延军, 梅丹兵, 等. 土-膨润土系竖向隔离工程屏障阻滞重金属污染物运移特性试验研究[J]. 防灾减灾工程学报, 2018, 38(5): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805008.htm

    LIU Rui, DU Yanjun, MEI Danbing, et al. Laboratory study of soil-bentonite vertical barrier on heavy metal migration retardation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 815-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805008.htm

    [20] 傅贤雷, 张润, 万勇, 等. 改性土-膨润土阻隔屏障化学渗透膜效应研究[J]. 岩土工程学报, 2020, 42(增刊1): 172-176. doi: 10.11779/CJGE2020S1034

    FU Xianlei, ZHANG Run, WAN Yong, et al. Chemico-osmotic membrane behaviors of amended soil-bentonite vertical barrier[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 172-176. (in Chinese) doi: 10.11779/CJGE2020S1034

图(7)  /  表(2)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  50
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 网络出版日期:  2023-03-04
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回