Application of methods for life-cycle deformation control of high concrete-faced rockfill dams
-
摘要: 高面板坝的变形对面板的安全运行有着特别重要的影响,国内外已建的高面板坝工程中,因坝体变形大导致防渗面板挤压破损,坝体渗漏量大的实例较多,不得不降低水库水位进行修复处理,造成较大的经济损失乃至给大坝的长期运行留下安全隐患。通过发生挤压破损的实例分析,发现变形控制缺乏系统性是发生面板挤压破损的主要因素,为预防面板破损,系统提出了“控制坝体总变形,转化有害变形,适应纵向变形”的坝体变形控制方法,并在使用软硬岩混合料筑坝的董箐面板堆石坝中得到的应用,取得了良好效果,该工程运行至今达十余年,未见面板有挤压破损迹象,该方法对建设200 m以上乃至300 m级超高面板坝具有重要借鉴意义。Abstract: The deformation of high concrete-faced rockfill dam (CFRD) has a particularly important influence on the safe opercation of impermeable face. To deal with the crushing damage of the impermeable face and the large leakage of dam body, which occurr in many constructed high CFRDs at home and abroad, the reservoirs have to lower the water level for maintenance, which has resulted in large economic losses and even safety hazards for long-term dam operation. Through analyzing the example of a high CFRD with crushing damage, it is found that the lack of systematic deformation control is the main factor for the crushing damage of the face. To prevent the damage of the impermeable face, a systematic method is proposed: "controlling the total deformation of the dam body, transforming harmful deformation, and adapting to vertical deformation". The method has achieved good results in Dongqing CFRD project, which uses mixed hard and soft rocks as dam materials. The project has been operating for more than ten years, and no signs of crushing damage have been detected in the impermeable face. The proposed method provides important reference experience for the design and construction of CFRDs of more than 200 m or even 300 m in height.
-
-
表 1 设计碾压工艺及参数表
Table 1 Design rolling process and parameter Table
项目 层厚/cm 碾压遍数 加水率/% 速度/(km·h-1) 干密度/(g·cm-3) 孔隙率/% 振动碾
(26 t)80 10 15 1~2 2.192 19.41 冲碾
(25 t)120 27 15 12~15 2.192 19.41 表 2 冲碾压实后坝体变形情况表
Table 2 Deformation of dam body after impact compaction
坝体最大断面沉降仪高程/ m 时间段 沉降监测值/mm 月沉量/mm 378.0 2007.06.01—2008.08.019 815.0 58 2008.08.19—2008.10.20 949.3 64 403.5 2007.06.16—2008.08.19 1037.7 74 2008.08.19—2008.10.20 1320.0 137 425.0 2007.12.31—2008.08.19 1086.7 135 2008.08.19—2008.10.20 1563.7 231 注:2008.08.19为冲碾前测值,2008.10.20为冲碾后测值。 表 3 最大坝高断面蓄水过程变形分析
Table 3 Deformation analysis of maximum high dam section during water storage stage
进度节点 上游水位/m 最大沉降/mm 沉降值占总变形比例/% 沉降差/mm 沉降差占总变形比例/% 填筑至坝顶 368.0 1654.1 79.6 下闸蓄水 372.0 1782.8 85.8 128.7 6.2 蓄至死水位 483.9 1943.2 93.5 160.4 7.7 截止点 485.4 2078.2 100.0 135.0 6.5 表 4 面板压型结构缝设计
Table 4 Design of pressed structural seam in face
面板受压区长度/m 压性缝间距/m 纵向变形计算值/mm 缝宽/mm 分缝条数 压性缝总宽/mm 420 15 86 8 29 232 注:计算时,压缩系数λ取60%。 表 5 董箐坝与同类大坝运行效果对比
Table 5 Operation effect between Dongqing dam and similar dams
表 6 几座典型面板坝工程混凝土面板垂直挤压缝设计
Table 6 Design of vertical extrusion joint of concrete face in several typical concrete-faced rockfill dam projects
工程名称 面浇筑后坝体纵向水平位移/mm 缝宽/mm 分缝条数 挤压缝总宽/mm 缝面处理 向左岸 向右岸 天生桥一级 128 133 2 34 68 2 mm沥青乳剂 三板溪 — — 2 13 26 2 mm沥青乳剂 水布垭 — — 5 39 195 5 mm高密泡沫板 巴贡 — — 6~12 18 216 * 洪家渡 13 17.5 8 19 152 8 mm闭孔泡沫板 注:*巴贡面板坝16—34块面板间的18条垂直缝按压性缝设计,其中16—21及27—34块缝宽均为12 mm,缝内充填12 mm厚沥青杉木板,木板弹性模量大于11000 MPa;第21—第27块面板间共6条垂直缝,在121 m高程以上,缝的上部宽度均为60 mm,缝内填充60 mmPulai木板,缝的底部200 mm范围宽度仍为12 mm,缝内填充12 mm厚沥青杉木板。 -
[1] PAUULO T Cruz, BAYARDO Materon, MANOEL Freitas. Concrete Face Rockfill Dams[M]. Springer, 2010.
[2] 郦能惠. 高混凝土面板堆石坝新技术[M]. 北京: 中国水利水电出版社, 2007. LI Neng-hui. Recent Technology for High Concrete Face Rockfill Dams[M]. Beijing: China Water Power Press, 2007. (in Chinese)
[3] 杨泽艳, 王富强, 吴毅瑾, 等. 中国堆石坝的新发展[J]. 水电与抽水蓄能, 2019, 5(6): 36–40, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC201906010.htm YANG Ze-yan, WANG Fu-qiang, WU Yi-jin, et al. New development of rockfill dam in China[J]. Hydropower and Pumped Storage, 2019, 5(6): 36–40, 45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC201906010.htm
[4] MARULANDA A, PINTO N L S. Recent experience on design, construction, and performance of CFRD dams[C]//International Conferences on Case Histories in Geotechnical Ebgineering. 2008. Beijing.
[5] 马洪琪, 曹克明. 超高面板坝的关键技术问题[J]. 中国工程科学, 2007, 9(11): 4–10. doi: 10.3969/j.issn.1009-1742.2007.11.001 MA Hong-qi, CAO Ke-ming. Key technical issues related to super-high concrete slab dam[J]. Engineering Sciences, 2007, 9(11): 4–10. (in Chinese) doi: 10.3969/j.issn.1009-1742.2007.11.001
[6] 杨泽艳, 蒋国澄. 洪家渡200 m级高面板堆石坝变形控制技术[J]. 岩土工程学报, 2008, 30(8): 1241–1247. doi: 10.3321/j.issn:1000-4548.2008.08.023 YANG Ze-yan, JIANG Guo-cheng. Deformation control techniques for 200 m-high Hongjiadu Concrete Face Rockfill Dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1241–1247. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.08.023
[7] 湛正刚, 张合作. 面板堆石坝设计中变形控制技术及控制指标[J]. 电力勘测设计, 2012, 65(增刊2): 74–78. ZHAN Zheng-gang, ZHANG He-zuo. Deformation control technology and controlling index in design of CFRD by[J]. Elcetric Power Survey Design, 2012, 65(S2): 74–78. (in Chinese)
[8] 徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报, 2019, 50(1): 62–74. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901008.htm XU Ze-ping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62–74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901008.htm
[9] MA H Q, CHI F D. Technical progress on researches for the safety of high concrete-faced rockfill dams[J]. Engineering, 2016, 2(3): 332–339.
[10] 朱永国. 猴子岩水电站面板堆石坝堆石体变形控制措施[J]. 水力发电, 2018, 44(11): 60–63. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201811018.htm ZHU Yong-guo. Control measures on rockfill deformation of the CFRD of houziyan hydropower station[J]. Water Power, 2018, 44(11): 60-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201811018.htm
[11] 周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426–1432. doi: 10.11779/CJGE201508010 ZHOU Mo-zhen, ZHANG Bing-yin, ZHANG Zong-liang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426–1432. (in Chinese) doi: 10.11779/CJGE201508010
[12] 罗亮, 陈烨, 仲洪滔. 土工膜在大坝面板挤压破坏临时处理工程中的应用[J]. 大坝与安全, 2013(2): 48–51. https://www.cnki.com.cn/Article/CJFDTOTAL-DBAQ201302017.htm LUO Liang, CHEN Ye, ZHONG Hong-tao. Application of geomembrane in temporary treatment of extrusion damage of dam face slab[J]. Dam & Safety, 2013(2): 48–51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBAQ201302017.htm
[13] 邓刚, 汪小刚, 温彦锋, 等. 混凝土面板坝面板变形模式与水平向挤压破损研究[J]. 水利学报, 2015, 46(4): 396–404. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201504004.htm DENG Gang, WANG Xiao-gang, WEN Yan-feng, et al. Study on conceptualization method of deformation pattern and horizontal breakage of face slab of concrete faced rockfill dam[J]. Journal of Hydraulic Engineering, 2015, 46(4): 396–404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201504004.htm
[14] 湛正刚, 史鹏飞, 夏遵全. 软硬岩混合料填筑的董箐面板堆石坝运行状况分析[J]. 水电与抽水蓄能, 2017, 3(1): 32–38, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC201701008.htm ZHAN Zheng-gang, SHI Peng-fei, XIA Zun-quan. Operation condition analysis of dongqing concrete face rockfill dam filled with hard and soft rock mixture[J]. Hydropower and Pumped Storage, 2017, 3(1): 32–38, 68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC201701008.htm
[15] 湛正刚, 慕洪友, 蔡大咏, 等. 董箐水电站面板堆石坝设计[J]. 贵州水力发电, 2009, 23(5): 17–21. https://www.cnki.com.cn/Article/CJFDTOTAL-GSLF200905009.htm ZHAN Zheng-gang, MU Hong-you, CAI Da-yong, et al. Design of face rockfill dam for dongqing hydropower station[J]. Guizhou Water Power, 2009, 23(5): 17–21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSLF200905009.htm
[16] 杨启贵, 徐琨, 贡建兵. 基于监测数据的水布垭面板堆石坝变形控制技术分析[J]. 水利水电快报, 2020, 41(1): 1–6. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSK202001004.htm YANG Qi-gui, XU Kun, GONG Jian-bing. Analysis on deformation control technology of Shuibuya concrete face rockfill dam based on monitoring data[J]. Express Water Resources & Hydropower Information, 2020, 41(1): 1–6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSK202001004.htm
-
期刊类型引用(2)
1. 宝鑫,刘晶波,李述涛,陆喜欢,王菲. 地下结构整体式反应位移法的改进. 工程力学. 2023(01): 76-86 . 百度学术
2. 肖鑫华. 基于数值模拟对深埋引水隧洞地震响应研究. 水利科技与经济. 2022(12): 105-109+115 . 百度学术
其他类型引用(7)