Prevention and control technology of rock burst in deep stope with complex solid boundary
-
摘要: 深部复杂立体边界采场在采掘期间很容易发生冲击地压,若采场再留有宽度较大的不规则阶段煤柱,则采场的冲击地压危险性更高。以侧向留设不等宽煤柱、回风顺槽上侧为立体不规则开采边界的赵各庄煤矿4137工作面为研究背景,建立了采场顶板结构力学模型,进行了冲击地压成因分析;在基于耗散结构体的耗散机制研究基础上,针对4137工作面煤层赋存条件,提出了以“L”、“I”型耗散结构体为主导的冲击地压防控技术;通过在不等宽煤柱区域实施“L”型耗散结构体,调整回采巷道煤岩体侧向集中高应力分布、改变了煤层能量耗散模式;通过在工作面实施“I”型弱结构体,在采场超前区域制造出一个动态移动的耗散结构释能体,该耗散结构体扩大了应力场范围、降低了应力集中程度、改变了煤体冲击能量聚集模式;煤层注水使采场煤体得到充分弱化,强化了耗散结构体的防冲功能。该防控技术在4137工作面进行了现场试验,试验显示冲击地压得到有效控制。Abstract: Rock burst is easy to occur in deep stope with complex soild boundary during excavation. If the irregular coal pillar with a larger width is left in the stope, the risk of rock burst in the stope will be stronger. Taking the working face No. 4137 of Zhaogezhuang coal mine with coal pillars with an unequal width at lateral side and a solid and irregular upper side of return air chute mining boundary as the research background, a mechanical model for the roof structures of the stope is established, and the causes for rock burst are analyzed. Based on the researches on the dissipative mechanism of dissipative structure body, according to the occurrence conditions of coal seam in the working face No. 4137, the prevention and control technology of rock burst dominated by L-and I-type dissipative structures is proposed. Through the implementation of L type dissipative structure in the area of coal pillars with an unequal width, the lateral concentrated high stress distribution of coal and rock mass in mining roadway is adjusted, and the energy dissipation mode of coal seam is changed. Through the implementation of I-type weak structure body in the working face, a dynamic moving dissipative structure energy release body is produced in the leading area of the stope. The dissipative structure body expands the range of stress field, reduces the stress concentration degree, and changes the accumulation mode of coal impact energy. The water injection in coal seam weakens the coal body and strengthens the anti-scour function of dissipative structures. The prevention and control technology is tested in the working face No. 4137, and the rock burst is effectively controlled.
-
-
-
[1] 潘立友, 侯家骏, 薄树祥. 悬顶结构下软底板采场冲击地压成因与防控研究[J]. 中国煤炭, 2017, 43(12): 72–75, 114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201712016.htm PAN Li-you, HOU Jia-jun, BO Shu-xiang. Study on causes and prevention measures of rock burst in soft floor under suspended roof structure[J]. China Coal, 2017, 43(12): 72–75, 114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201712016.htm
[2] WANG G F, JIN F, GONG S Y, et al. Generating behaviors of strong tremors and experimental study of rockburst-triggering criterion[J]. Shock and Vibration, 2019, 6319612.
[3] 齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1–5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201410001.htm QI Qing-xin, OUYANG Zhen-hua, ZHAO Shan-kun, et al. Study on types of rock burst mine and prevention methods in China[J]. Coal Science and Technology, 2014, 42(10): 1–5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201410001.htm
[4] 姜耀东, 潘一山, 姜福兴, 等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 2014, 39(2): 205–213. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402001.htm JIANG Yao-dong, PAN Yi-shan, JIANG Fu-xing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205–213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402001.htm
[5] 姜福兴, 刘懿, 翟明华, 等. 基于应力与围岩分类的冲击地压危险性评价研究[J]. 岩石力学与工程学报, 2017, 36(5): 1041–1052. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705001.htm JIANG Fu-xing, LIU Yi, ZHAI Ming-hua, et al. Evaluation of rock burst hazard based on the classification of stress and surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1041–1052. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705001.htm
[6] 潘立友, 张立俊, 刘先贵. 冲击地压预测与防治实用技术[M]. 徐州: 中国矿业大学出版社, 2006. PAN Li-you, ZHANG Li-jun, LIU Xian-gui. Practical Technology of Rock Burst Prediction and Prevention[M]. Xuzhou: China University of Mining and Technology Press, 2006. (in Chinese)
[7] 潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844–1851. doi: 10.3321/j.issn:1000-6915.2003.11.019 PAN Yi-shan, LI Zhong-hua, ZHANG Meng-tao. Distribution, type, mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844–1851. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.11.019
[8] 窦林名, 何学秋. 煤矿冲击矿压的分级预测研究[J]. 中国矿业大学学报, 2007, 36(6): 717–722. doi: 10.3321/j.issn:1000-1964.2007.06.001 DOU Lin-ming, HE Xue-qiu. Technique of classification forecasting rock burst in coal mines[J]. Journal of China University of Mining & Technology, 2007, 36(6): 717–722. (in Chinese) doi: 10.3321/j.issn:1000-1964.2007.06.001
[9] 潘俊锋, 毛德兵, 蓝航, 等. 我国煤矿冲击地压防治技术研究现状及展望[J]. 煤炭科学技术, 2013, 41(6): 21–25, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201306005.htm PAN Jun-feng, MAO De-bing, LAN Hang, et al. Study status and prospects of mine pressure bumping control technology in China[J]. Coal Science and Technology, 2013, 41(6): 21–25, 41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201306005.htm
[10] 李振雷, 何学秋, 窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报, 2018, 47(1): 162–171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm LI Zhen-lei, HE Xue-qiu, DOU Lin-ming. Control measures and practice for rock burst induced by overburden fracture in top-coal caving mining[J]. Journal of China University of Mining & Technology, 2018, 47(1): 162–171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm
[11] 杨伟利, 姜福兴, 温经林, 等. 遗留煤柱诱发冲击地压机理及其防治技术研究[J]. 采矿与安全工程学报, 2014, 31(6): 876–880, 887. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201406008.htm YANG Wei-li, JIANG Fu-xing, WEN Jing-lin, et al. Study on mechanisms of rock burst induced by a left coal pillar and prevention technology[J]. Journal of Mining and Safety Engineering, 2014, 31(6): 876–880, 887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201406008.htm
[12] 曹正正. 巷式充填开采煤柱失稳机制及冲击矿压机理研究[D]. 徐州: 中国矿业大学, 2017. CAO Zheng-zheng. Research on Mechanism of Coal Pillar Instability and Rockburst in Roadway Backfilling Mining Technology[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)
[13] 宋义敏, 杨小彬. 煤柱失稳破坏的变形场及能量演化试验研究[J]. 采矿与安全工程学报, 2013, 30(6): 822–827. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201306006.htm SONG Yi-min, YANG Xiao-bin. Evolution characteristics of deformation and energy fields during coal pillar instability[J]. Journal of Mining & Safety Engineering, 2013, 30(6): 822–827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201306006.htm
[14] 张明, 姜福兴, 李家卓, 等. 基于巨厚岩层-煤柱协同变形的煤柱稳定性[J]. 岩土力学, 2018, 39(2): 705–714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802040.htm ZHANG Ming, JIANG Fu-xing, LI Jia-zhuo, et al. Stability of coal pillar on the basis of the co-deformation of thick rock strata and coal pillar[J]. Rock and Soil Mechanics, 2018, 39(2): 705–714. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802040.htm
[15] 陈建强, 闫瑞兵, 刘昆轮. 乌鲁木齐矿区冲击地压危险性评价方法研究[J]. 煤炭科学技术, 2018, 46(10): 22–29. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201810004.htm CHEN Jian-qiang, YAN Rui-bing, LIU Kun-lun. Study on evaluation method of rock burst danger in Urumqi Mining Area[J]. Coal Science and Technology, 2018, 46(10): 22–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201810004.htm
[16] 周澎. 特厚煤层综放开采冲击地压防治技术与实践[J]. 煤炭科学技术, 2011, 39(4): 35–39. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201104009.htm ZHOU Peng. Technology and practices on mine pressure bumping prevention and control of fully mechanized top coal caving mining in ultra thick seam[J]. Coal Science and Technology, 2011, 39(4): 35–39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201104009.htm
[17] 张月征, 纪洪广, 彭华, 等. 冲击地压与区域构造应力环境相关性及其应变响应特征[J]. 煤炭学报, 2016, 41(增刊2): 311–318. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2005.htm ZHANG Yue-zheng, JI Hong-guang, PENG Hua, et al. Correlation between rockburst and regional tectonic stress environment and its strain response characteristics[J]. Journal of China Coal Society, 2016, 41(S2): 311–318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2005.htm
[18] 张基伟, 王金安. 大倾角特厚煤层悬顶结构能量分布特征与防冲方法[J]. 煤炭学报, 2014, 39(增刊2): 316–324. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S2005.htm ZHANG Ji-wei, WANG Ji-nan. Energy distribution characteristics and rock burst control methods of steeper inclined thick coal seam hanging roof[J]. Journal of China Coal Society, 2014, 39(S2): 316–324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S2005.htm
[19] 姜福兴, 王平, 冯增强, 等. 复合型厚煤层"震-冲"型动力灾害机理、预测与控制[J]. 煤炭学报, 2009, 34(12): 1605–1609. doi: 10.3321/j.issn:0253-9993.2009.12.004 JIANG Fu-xing, WANG Ping, FENG Zeng-qiang, et al. Mechanism, prediction and control of "rock burst induced by shock bump" kind dynamic accident in composite thickness coal[J]. Journal of China Coal Society, 2009, 34(12): 1605–1609. (in Chinese) doi: 10.3321/j.issn:0253-9993.2009.12.004
[20] SONG D Z, WANG E Y, LI Z H, et al. Energy dissipation of coal and rock during damage and failure process based on EMR[J]. International Journal of Mining Science and Technology, 2015, 25(5): 787–795.
[21] SONG D Z, WANG E Y, LI N, et al. Rock burst prevention based on dissipative structure theory[J]. International Journal of Mining Science and Technology, 2012, 22(2): 159–163.