• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

采动应力下深部煤体渗透率演化规律研究

荣腾龙, 刘克柳, 周宏伟, 关灿, 陈岩, 任伟光

荣腾龙, 刘克柳, 周宏伟, 关灿, 陈岩, 任伟光. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
引用本文: 荣腾龙, 刘克柳, 周宏伟, 关灿, 陈岩, 任伟光. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
Citation: RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015

采动应力下深部煤体渗透率演化规律研究  English Version

基金项目: 

国家自然科学基金项目 52004081

国家自然科学基金项目 51904092

国家自然科学基金项目 52174175

河南省高等学校重点科研项目 21A440005

河南理工大学博士基金项目 B2020-34

详细信息
    作者简介:

    荣腾龙(1988—),男,讲师,博士,主要从事深部煤体多场耦合及瓦斯渗流方面的研究工作。E-mail: rongtenglong@126.com

    通讯作者:

    荣腾龙, E-mail: rongtenglong@126.com

  • 中图分类号: TD712

Permeability evolution of deep coal under mining stress

  • 摘要: 为了研究深部开采工作面前方煤体的渗透属性,首先基于典型开采方式应力路径进行了不同瓦斯压力下的深部煤体渗透率测试,然后根据渗透率升降速率和单调性对渗透率的演化过程进行划分,归纳出常规三轴加载和采动应力下煤体渗透率演化过程概化模型,最后结合三向扰动应力下的深部煤体渗透率模型与二次多项式拟合关系建立了深部采动煤体全应力–应变渗透率理论模型。结果表明:典型开采方式采动应力路径下深部煤体的应力–应变曲线不存在压密阶段;峰值应力之前和之后测点的渗透率增加率上升幅度较小,而峰值点的渗透率增加率上升幅度较大;常规三轴加载的煤体渗透率曲线呈“V”字形,相应的概化模型包括下降段、峰前缓升段、急升段和峰后缓升段;采动应力下的深部煤体渗透率曲线呈倒“Z”字台阶形,相应的概化模型可划分为峰前缓升段、急升段和峰后缓升段;建立的渗透率理论模型能够表征不同开采方式下深部煤体全应力–应变过程的渗透率演化。
    Abstract: In order to investigate its seepage properties, the permeability of the coal in front of deep working face under different gas pressures is tested based on the mining stress path of typical mining layouts. Subsequently, the permeability evolution is divided according to the rate and monotonicity of permeability variation. Two conceptual permeability models for the coal under different stress paths are obtained. One is about the conventional triaxial loading, and the other is about the mining stress path. Moreover, according to the permeability model for deep coal under triaxial disturbance stress and the quadratic polynomial fitting relationship, a theoretical permeability model for the deep coal in complete stress-strain process is developed. The test results show that there is no compaction stage in the stress-strain curves of the coal under typical mining stress. The increase rate of permeability at the testing points before and after the peak stress is small, but that at the peak stress point is very large. The permeability curve of the coal under the conventional triaxial loading is V-shaped. The conceptual permeability model under the conventional triaxial loading can be divided into decreasing section, slow increasing section before the peak, sharp increasing section and slow increasing section after the peak. The permeability curve of the deep coal under mining stress is inverted Z-shaped. The conceptual permeability model under the mining stress path can be divided into slow increasing section before the peak, sharp increasing section and slow increasing section after the peak. Finally, it is validated that the developed theoretical permeability model can evaluate the permeability evolution of the deep coal under different mining layouts.
  • 图  1   煤体采动应力变化[8]

    Figure  1.   Stress evolution of coal under mining[8]

    图  2   典型开采方式的采动应力路径[8]

    Figure  2.   Stress paths under typical mining layouts[8]

    图  3   深部煤体试样

    Figure  3.   Tested samples of deep coal

    图  4   高温高压三轴流变仪

    Figure  4.   Triaxial test system with high temperature and pressure

    图  5   采动应力渗透试验测点布置

    Figure  5.   Layout of testing points for permeability tests under mining stress

    图  6   采动应力下深部煤体渗透率结果

    Figure  6.   Permeability evolution of deep coal under mining stress

    图  7   常规三轴加载下煤体渗透率试验结果

    Figure  7.   Permeability evolution of coal under conventional triaxial loading

    图  8   常规三轴试验渗透率概化模型

    Figure  8.   Conceptual permeability model for coal under conventional triaxial loading

    图  9   采动应力下渗透率概化模型

    Figure  9.   Conceptual permeability model for coal under mining stress

    图  10   不同开采方式下深部煤体渗透率拟合结果

    Figure  10.   Permeabilities of deep coal under different mining layouts

    表  1   不同开采方式下采动煤体渗透率测试

    Table  1   Permeability tests of mining-induced coal under different mining layouts

    序号 取样地点及文献 试验模拟埋深/m 模拟原岩应力/MPa 测试气体类型 年份
    1 平煤八矿己14-14120工作面[9] 360 9 CH4 2012年
    2 晋煤赵庄矿3号煤层[10] 360 9 CH4 2012年
    3 平煤十矿己15-24080工作面[11] 600 15 CH4 2014年
    4 川煤白皎矿2481工作面[12] 1000 25 CH4 2016年
    5 南川宏能煤业矿井西翼K1煤层[13] 200 5 CH4 2016年
    6 白皎矿#4煤层[14] 1000 25 CH4 2016年
    7 兖州盆地[15] 1000 25 CH4 2017年
    8 平煤八矿某工作面[16] 600 15 N2 2017年
    9 平煤己15煤层[17] 320 8 CH4 2020年
    下载: 导出CSV

    表  2   不同气体压差下深部采动煤体力学特征结果

    Table  2   Mechanical results of deep coal under different gas pressures

    试件编号 气体压差/MPa 峰值应力/MPa 峰值应变/%
    P1 0.5 52.53 0.92
    P2 1.0 48.08 0.67
    P3 1.5 49.82 0.71
    P4 2.0 48.05 0.68
    下载: 导出CSV

    表  3   峰值应力前后测点渗透率增加率

    Table  3   Increase rates of permeability before and after peak stress

    试件编号 ηbcp ηcp ηacp
    P1 1.00 37.24 44.64
    P2 0.56 7.30 9.31
    P3 0.79 8.75 9.19
    P4 5.10 41.51 57.39
    下载: 导出CSV

    表  4   煤体基本参数列表[14, 32-33]

    Table  4   Basic parameters of coal[14, 32-33]

    孔隙率ϕ0/% 煤体泊松比vb 内摩擦角/(°) 煤体弹性模量Eb0/GPa 裂隙弹性模量Ef0/GPa εL/% PL/MPa FI Biot系数αb
    10.11 0.22 25.12 6.84 3.00 0.52 3.34 0.20 1.00
    下载: 导出CSV

    表  5   峰后缓升段渗透率拟合系数

    Table  5   Fitting coefficients in slowly increasing zone after peak stress

    开采方式 χ1 χ2 χ3 R2
    保护层 7.195×10-15 2.531×10-7 1.878 0.9894
    放顶煤 -2.195×10-15 1.578×10-7 1.754 0.9253
    下载: 导出CSV
  • [1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1–6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601002.htm

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1–6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601002.htm

    [2] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采: 理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391–1397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm

    XIE He-ping, ZHOU Hong-wei, XUE Dong-jie, et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society, 2014, 39(8): 1391–1397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm

    [3] 申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(9): 1470–1476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409022.htm

    SHEN Jian, QIN Yong, FU Xue-hai, et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience, 2014, 25(9): 1470–1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409022.htm

    [4]

    ZHOU H W, WANG L J, RONG T L, et al. Creep-based permeability evolution in deep coal under unloading confining pressure[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 185–196. doi: 10.1016/j.jngse.2019.03.010

    [5] 王辰霖, 张小东, 李贵中, 等. 循环加卸载作用下不同高度煤样渗透性试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2299–2308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810011.htm

    WANG Chen-lin, ZHANG Xiao-dong, LI Gui-zhong, et al. Experimental study on the permeability of coal samples with different heights under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2299–2308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810011.htm

    [6] 贾恒义, 王凯, 王益博, 等. 围压循环加卸载作用下含瓦斯煤样渗透特性试验研究[J]. 煤炭学报, 2020, 45(5): 1710–1718. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005016.htm

    JIA Heng-yi, WANG Kai, WANG Yi-bo, et al. Permeability characteristics of gas-bearing coal specimens under cyclic loading-unloading of confining pressure[J]. Journal of China Coal Society, 2020, 45(5): 1710–1718. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005016.htm

    [7] 刘超, 黄滚, 赵宏刚, 等. 复杂应力路径下原煤力学与渗透特性试验[J]. 岩土力学, 2018, 39(1): 191–198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801024.htm

    LIU Chao, HUANG Gun, ZHAO Hong-gang, et al. Tests on mechanical and permeability characteristics of raw coal under complex stress paths[J]. Rock and Soil Mechanics, 2018, 39(1): 191–198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801024.htm

    [8] 谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067–1074. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067–1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    [9] 于文静. 典型开采条件下含瓦斯煤体渗透特性研究[D]. 北京: 中国矿业大学(北京), 2012.

    YU Wen-jing. Study on Permeability Characteristics of Coal Under Three Typical Mining Conditions[D]. Beijing: China University of mining and Technology(Beijing), 2012. (in Chinese)

    [10] 许江, 李波波, 周婷, 等. 加卸载条件下煤岩变形特性与渗透特征的试验研究[J]. 煤炭学报, 2012, 37(9): 1493–1498. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209016.htm

    XU Jiang, LI Bo-bo, ZHOU Ting, et al. Experimental study of coal deformation and permeability characteristics under loading-unloading conditions[J]. Journal of China Coal Society, 2012, 37(9): 1493–1498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209016.htm

    [11] 李文璞. 采动影响下煤岩力学特性及瓦斯运移规律研究[D]. 重庆: 重庆大学, 2014.

    LI Wen-pu. Research on Mechanical Characteristics and Gas Migration Law of Coal Influenced by Mining[D]. Chongqing: Chongqing University, 2014. (in Chinese)

    [12] 赵宏刚, 张东明, 刘超, 等. 加卸载下原煤力学特性及渗透演化规律[J]. 工程科学学报, 2016, 38(12): 1674–1680. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612003.htm

    ZHAO Hong-gang, ZHANG Dong-ming, LIU Chao, et al. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions[J]. Chinese Journal of Engineering, 2016, 38(12): 1674–1680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612003.htm

    [13] 蒋长宝, 段敏克, 尹光志, 等. 不同含水状态下含瓦斯原煤加卸载试验研究[J]. 煤炭学报, 2016, 41(9): 2230–2237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609012.htm

    JIANG Chang-bao, DUAN Min-ke, YIN Guang-zhi, et al. Loading-unloading experiments of coal containing gas under the condition of different moisture contents[J]. Journal of China Coal Society, 2016, 41(9): 2230–2237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609012.htm

    [14]

    ZHANG Z T, ZHANG R, XIE H P, et al. An anisotropic coal permeability model that considers mining-induced stress evolution, microfracture propagation and gas sorption-desorption effects[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 664–679. doi: 10.1016/j.jngse.2017.08.028

    [15]

    JU Y, ZHANG Q G, ZHENG J T, et al. Experimental study on CH4 permeability and its dependence on interior fracture networks of fractured coal under different excavation stress paths[J]. Fuel, 2017, 202: 483–493. doi: 10.1016/j.fuel.2017.04.056

    [16] 薛熠. 采动影响下损伤破裂煤岩体渗透性演化规律研究[D]. 徐州: 中国矿业大学, 2017.

    XUE Yi. Study on the Permeability Evolution of Fractured Coal under the Influence of Mining[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)

    [17]

    XIE J, GAO M Z, ZHANG R, et al. Gas flow characteristics of coal samples with different levels of fracture network complexity under triaxial loading and unloading conditions[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107606. doi: 10.1016/j.petrol.2020.107606

    [18]

    PAN Z J, CONNELL L D. Modelling permeability for coal reservoirs: a review of analytical models and testing data[J]. International Journal of Coal Geology, 2012, 92: 1-44. doi: 10.1016/j.coal.2011.12.009

    [19]

    XUE S, ZHENG C S, KIZIL M, et al. Coal permeability models for enhancing performance of clean gas drainage: a review[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108283. doi: 10.1016/j.petrol.2020.108283

    [20] 肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112007.htm

    XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112007.htm

    [21]

    ZHOU H W, ZHAO J W, SU T, et al. Characterization of gas flow in backfill mining-induced coal seam using a fractional derivative-based permeability model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104571. doi: 10.1016/j.ijrmms.2020.104571

    [22]

    XUE Y, GAO F, GAO Y N, et al. Quantitative evaluation of stress-relief and permeability-increasing effects of overlying coal seams for coal mine methane drainage in Wulan coal mine[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 122–137. doi: 10.1016/j.jngse.2016.04.029

    [23]

    LI J H, LI B B, CHENG Q Y, et al. Characterization of anisotropic coal permeability with the effect of sorption-induced deformation and stress[J]. Fuel, 2022, 309: 122089. doi: 10.1016/j.fuel.2021.122089

    [24] 周宏伟, 荣腾龙, 牟瑞勇, 等. 采动应力下煤体渗透率模型构建及研究进展[J]. 煤炭学报, 2019, 44(1): 221–235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901022.htm

    ZHOU Hong-wei, RONG Teng-long, MOU Rui-yong, et al. Development in modeling approaches to mining-induced permeability of coals[J]. Journal of China Coal Society, 2019, 44(1): 221–235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901022.htm

    [25] 荣腾龙, 周宏伟, 王路军, 等. 三向应力条件下煤体渗透率演化模型研究[J]. 煤炭学报, 2018, 43(7): 1930–1937. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm

    RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. Coal permeability model for gas movement under the three-dimensional stress[J]. Journal of China Coal Society, 2018, 43(7): 1930–1937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm

    [26] 王广荣, 薛东杰, 郜海莲, 等. 煤岩全应力-应变过程中渗透特性的研究[J]. 煤炭学报, 2012, 37(1): 107–112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201026.htm

    WANG Guang-rong, XUE Dong-jie, GAO Hai-lian, et al. Study on permeability characteristics of coal rock in complete stress-strain process[J]. Journal of China Coal Society, 2012, 37(1): 107–112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201026.htm

    [27] 魏建平, 王登科, 位乐. 两种典型受载含瓦斯煤样渗透特性的对比[J]. 煤炭学报, 2013, 38(增刊1): 93–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm

    WEI Jian-ping, WANG Deng-ke, WEI Le. Comparison of permeability between two kinds of loaded coal containing gas samples[J]. Journal of China Coal Society, 2013, 38(S1): 93–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm

    [28]

    ZHENG C S, KIZIL M S, AMINOSSADATI S M, et al. Effects of geomechanical properties of interburden on the damage-based permeability variation in the underlying coal seam[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 42–51. doi: 10.1016/j.jngse.2018.04.017

    [29] 薛熠, 高峰, 高亚楠, 等. 采动影响下损伤煤岩体峰后渗透率演化模型研究[J]. 中国矿业大学学报, 2017, 46(3): 521–527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703011.htm

    XUE Yi, GAO Feng, GAO Ya-nan, et al. Research on mining-induced permeability evolution model of damaged coal in post-peak stage[J]. Journal of China University of Mining & Technology, 2017, 46(3): 521–527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703011.htm

    [30] 荣腾龙, 周宏伟, 王路军, 等. 开采扰动下考虑损伤破裂的深部煤体渗透率模型研究[J]. 岩土力学, 2018, 39(11): 3983–3992. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811010.htm

    RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. A damage-based permeability models of deep coal under mining disturbance[J]. Rock and Soil Mechanics, 2018, 39(11): 3983–3992. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811010.htm

    [31] 尹光志, 黄启翔, 张东明, 等. 地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 336–343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002017.htm

    YIN Guang-zhi, HUANG Qi-xiang, ZHANG Dong-ming, et al. Test study of gas seepage characteristics of gas-bearing coal specimen during process of deformation and failure in geostress field[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 336–343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002017.htm

    [32] 齐消寒. 近距离低渗煤层群多重采动影响下煤岩破断与瓦斯流动规律及抽采研究[D]. 重庆: 重庆大学, 2016.

    QI Xiao-han. Research on the Coal Rock Failure and Methane Flow Laws of Short-Distance and Low Permeability Coal Seams Group under the Effect of Repeated Excavation[D]. Chongqing: Chongqing University, 2016. (in Chinese)

    [33] 白鑫. 液态二氧化碳相变射孔致裂煤岩体增透机理及应用研究[D]. 重庆: 重庆大学, 2019.

    BAI Xin. Research on Mechanism and Application of Liquid Carbon Dioxide Phase Change Jet Fracturing Coal Seam to Increase Gas Permeability[D]. Chongqing: Chongqing University, 2019. (in Chinese)

  • 期刊类型引用(8)

    1. 徐善进,卢坤林,梅一帆,贾森林. 基于构造滑动面正应力分布边坡可靠性分析方法研究. 合肥工业大学学报(自然科学版). 2025(03): 418-425+432 . 百度学术
    2. 王喆恺,谭慧明,高志兵. 基于机器学习的厚覆盖土层建筑场地类别评价. 地震学报. 2024(03): 477-489 . 百度学术
    3. 候建琴. 基于强度折减法和随机响应面的边坡变形稳定可靠度分析. 价值工程. 2024(28): 109-112 . 百度学术
    4. 蒋志坚,黄旭东,黄小平,朱珍德. 基于抗滑桩-锚杆组合结构支护下边坡变形机制研究. 山西建筑. 2024(22): 69-73+144 . 百度学术
    5. 宋健,陆朱汐,谢华威,吴凯莉. 地震作用下分层土边坡多滑面变形破坏的数值模拟研究. 地震工程学报. 2023(02): 296-305 . 百度学术
    6. 舒苏荀,张东升,潘天久,钱家骏,陈训龙. 小样本条件下基于Bootstrap方法的边坡非概率可靠度分析. 土木工程与管理学报. 2023(03): 96-103 . 百度学术
    7. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
    8. 孙志彬,郝状,谭晓慧,杨小礼,姬建. 基于滑动面离散的边坡三维上限分析机构. 岩石力学与工程学报. 2022(09): 1923-1934 . 百度学术

    其他类型引用(6)

图(10)  /  表(5)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  32
  • PDF下载量:  118
  • 被引次数: 14
出版历程
  • 收稿日期:  2021-04-08
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回