Kinetic theory and numerical simulation of biomineralization
-
摘要: 微生物矿化技术作为一个新兴研究课题,近些年来得到了广泛关注,然而因其反应机制复杂,很难从时间和空间尺度对矿化反应过程进行定量表示。在微生物诱导碳酸盐沉淀原理的基础上,考虑细菌的吸附和筛滤效应,以及尿素水解动力学和沉淀动力学模型,对微生物矿化反应动力学理论进行了探究,并结合孔隙尺度下的微生物矿化反应试验,采用有限元软件进行多物理场耦合模拟。结果表明,细菌吸附和筛滤行为引起了细菌分布的差异性,而这种差异性进而影响了碳酸钙的沉积分布;溶液汇合初始段碳酸钙生成量横向分布不均匀,纵向分布呈增长趋势;经历40h的反应时间,渗透率可降低80%左右;当钙离子含量丰富时,碳酸钙沉淀速率受限于尿素水解速率;附着细菌量和沉淀速率的叠加效应表现为细菌被沉淀包裹的衰亡速率。本模型验证了微生物矿化沉积反应过程,丰富了微生物矿化反应理论,并有望为现场工程应用的效果预测提供参考。Abstract: The biomineralization technology that becomes an emerging research topic has attracted wide attentions in recent years. However, it is hard to quantify the reaction process of biomineralization on temporal and spatial scales due to its complicated reactive mechanisms. Based on the principle of microbially induced carbonate precipitation, considering the adsorption and straining of bacteria, adopting the kinetic model for urea hydrolysis and precipitation, a reactive kinetic theory of biomineralization is investigated. Finally, based on the biomineralization experiments on a pore scale, a finite element software is adopted for multi-physics coupling. The results show that the adsorption and straining effects lead to the differences in distribution of bacteria, and then further influence the spatial distribution of calcium carbonate. The transverse distribution of CaCO3 content during the initial mixing stage is not uniform, while the longitudinal distribution shows an increasing trend. The permeability shows an 80% reduction after 40 hours of reaction. The rate of CaCO3 precipitation is limited by the rate of urea hydrolysis when calcium ions are abundant. The decay rate of bacteria due to CaCO3 encapsulation is the combined effect of amounts of adsorbed bacteria and precipitation rate. The model can reflect the evolution of biomineralization-induced precipitation during reaction process, further enrich the theory of biomineralization reaction. This study is expected to provide reference in predicting the effect for the field-scale geotechnical engineering.
-
-
表 1 微生物矿化反应模型参数
Table 1 Parameters used in reaction model for biomineralization
参数 取值 参数 取值 0.5 [23] cm2/s [23] 1325 kg/m3① cm2/s [23] 75 μm① cm2/s [34] m/s [23] cm2/s [34] cells/mL① cm2/s [34] 0.5 mol/L [23] m [35] 0.5 mol/L [23] m [35] 0.3 min-1② 0.167mol/m3/s/OD③ 0.008 min-1② 0.305 mol/L [32] 0.03 min-1② 0.6 mol/L [10] 0.005 min-1② 292 m2/L [36] -0.6 mol/m2/s [36] 5 cm3/g② 1 [37] 2.5 cm3/g② 100.1 g/mol [33] 1.5 2710 kg/m3 [33] 注:①根据文献[23]提供的数据进行预估;②参考文献[29,30]试验数据拟合而得,其值主要与多孔介质特性有关;③文献[32]换算而得,其中OD表示光密度,1 OD等于4.0×108 cells/mL[22]。 -
[1] PACHECO T F, LABRINCHA J A, DIAMANTI M V, et al. Biotechnologies and Biomimetics for Civil Engineering[M]. Cham: Springer International Publishing, 2015.
[2] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
[3] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643–653. doi: 10.11779/CJGE201604008 HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643–653. (in Chinese) doi: 10.11779/CJGE201604008
[4] XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
[5] 桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269–278. doi: 10.11779/CJGE202002008 GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269–278. (in Chinese) doi: 10.11779/CJGE202002008
[6] MA G L, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2021, 58(7): 969–981. doi: 10.1139/cgj-2020-0045
[7] XIAO Y, ZHANG Z C, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. doi: 10.1061/(ASCE)GT.1943-5606.0002666
[8] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486–1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486–1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
[9] XIAO Y, TANG Y, MA G, et al. Thermal conductivity of biocemented graded sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(10): 04021106. doi: 10.1061/(ASCE)GT.1943-5606.0002621
[10] PAASSEN L Van. Biogrout Ground Improvement by Microbially Induced Carbonate Precipitation[D]. Rijswijk Netherland: Delft University of Technology, 2009.
[11] 赵常, 张瑾璇, 张宇, 等. 微生物加固土多尺度研究进展[J]. 北京工业大学学报, 2021, 47(7): 792–801. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107014.htm ZHAO Chang, ZHANG Jin-xuan, ZHANG Yu, et al. Research Progress on Multi-scale Biocemented Soil[J]. Journal of Beijing University of Technology, 2021, 47(7): 792–801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107014.htm
[12] 崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397–402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397–402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm
[13] 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048–1055. doi: 10.11779/CJGE201806010 PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048–1055. (in Chinese) doi: 10.11779/CJGE201806010
[14] XIAO Y, STUEDLEIN A W, RAN J Y, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016. doi: 10.1061/(ASCE)GT.1943-5606.0002165
[15] XIAO Y, STUEDLEIN A W, PAN Z Y, et al. Toe-bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 06020026. doi: 10.1061/(ASCE)GT.1943-5606.0002404
[16] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023–1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023–1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
[17] 刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26–31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm LIU Han-long, MA Guo-liang, XIAO Yang et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Chinese Ground Improvement, 2019, 1(1): 26–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
[18] XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
[19] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675–682. doi: 10.11779/CJGE201904010 XIE Yue-han, TANG Chao-sheng, YIN Li-yang et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675–682. (in Chinese) doi: 10.11779/CJGE201904010
[20] 马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290–299. doi: 10.11779/CJGE202102009 MA Guo-liang, HE Xiang, LU Hua-ming et al. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2020, 43(2): 290–299. (in Chinese) doi: 10.11779/CJGE202102009
[21] WANG Y, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique, 2019, 69(12): 1086–1094. doi: 10.1680/jgeot.18.P.031
[22] WANG Y, SOGA K, DEJONG J T, et al. Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: particle-scale experimental study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021036. doi: 10.1061/(ASCE)GT.1943-5606.0002509
[23] 何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005–1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm HE Xiang, MA Guo-liang, WANG Yang et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005–1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
[24] EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): W07519.
[25] MINTO J M, LUNN R J, EL MOUNTASSIR G. Development of a reactive transport model for field‐scale simulation of microbially induced carbonate precipitation[J]. Water Resources Research, 2019, 55(8): 7229–7245. doi: 10.1029/2019WR025153
[26] NASSAR M K, GURUNG D, BASTANI M, et al. Large-scale experiments in microbially induced calcite precipitation (MICP): reactive transport model development and prediction[J]. Water Resources Research, 2018, 54(1): 480–500. doi: 10.1002/2017WR021488
[27] BEAR J. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier, 1972.
[28] BRADFORD S A, WANG Y S, KIM H, et al. Modeling microorganism transport and survival in the subsurface[J]. Journal of Environmental Quality, 2014, 43(2): 421–440. doi: 10.2134/jeq2013.05.0212
[29] NING Z G, LI R, LIAN H S, et al. Effects of flow-interruption on the bacteria transport behavior in porous media[J]. Journal of Hydrology, 2021, 595: 125677. doi: 10.1016/j.jhydrol.2020.125677
[30] BRADFORD S A, BETTAHAR M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2006, 82(1): 99–117.
[31] WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Morduch University, 2004.
[32] LAUCHNOR E G, TOPP D M, PARKER A E, et al. Whole cell kinetics of ureolysis by sporosarcina pasteurii[J]. Journal of Applied Microbiology, 2015, 118(6): 1321–1332. doi: 10.1111/jam.12804
[33] WIJNGAARDEN W K, VERMOLEN F J, MEURS G A M, et al. A mathematical model for biogrout[J]. Computational Geosciences, 2013, 17(3): 463–478. doi: 10.1007/s10596-012-9316-0
[34] HAYNES W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2014.
[35] WANG X R, NACKENHORST U. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation[J]. Advances in Water Resources, 2020, 140: 103563. doi: 10.1016/j.advwatres.2020.103563
[36] BARKOUKI T H, MARTINEZ B C, MORTENSEN B M, et al. Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments[J]. Transport in Porous Media, 2011, 90(1): 23–39. doi: 10.1007/s11242-011-9804-z
[37] DUPRAZ S, PARMENTIER M, MÉNEZ B, et al. Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers[J]. Chemical Geology, 2009, 265(1): 44–53.
[38] CUTHBERT M O, RILEY M S, HANDLEY-SIDHU S, et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation[J]. Ecological Engineering, 2012, 41: 32–40. doi: 10.1016/j.ecoleng.2012.01.008
[39] QIN C Z, HASSANIZADEH S M, EBIGBO A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: insight into scale dependence of biogeochemical reaction rates[J]. Water Resources Research, 2016, 52(11): 8794–8810. doi: 10.1002/2016WR019128
[40] HOMMEL J, EBIGBO A, GERLACH R, et al. Finding a balance between accuracy and effort for modeling biomineralization[J]. Energy Procedia, 2016, 97: 379–386. doi: 10.1016/j.egypro.2016.10.028
-
期刊类型引用(6)
1. 黄虎,LIU Zhihua,LIU Dee,FENG Yang,ZHANG Hao,CHEN Depeng,HE Zhihai,FENG Pan,荣辉. Properties of Solid Waste-based Solidified Sludge Improved by Microbially Induced Calcium Carbonate Precipitation Technology. Journal of Wuhan University of Technology(Materials Science). 2025(02): 533-545 . 百度学术
2. 张瑾璇,刘汉龙,肖杨. 液滴微流控芯片系统研发与微生物矿化机理研究. 岩土工程学报. 2024(06): 1236-1245 . 本站查看
3. 刘汉龙,赵常,肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战. 岩土工程学报. 2024(07): 1347-1358 . 本站查看
4. 缪林昌,王恒星,孙潇昊,吴林玉,郭薪,范广才. 生物矿化固沙长效性分析. 岩土力学. 2024(11): 3212-3220 . 百度学术
5. 王腾,钟东生,周茗如,梁生伟. 基于多孔介质理论的微生物固化砂土试验及模拟. 材料导报. 2023(S1): 163-169 . 百度学术
6. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 . 百度学术
其他类型引用(11)