• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工格室规格对加筋土剪切性能的影响

左政, 杨广庆, 王贺, 许淋颖, 靳静, 梁训美

左政, 杨广庆, 王贺, 许淋颖, 靳静, 梁训美. 土工格室规格对加筋土剪切性能的影响[J]. 岩土工程学报, 2022, 44(6): 1053-1060. DOI: 10.11779/CJGE202206009
引用本文: 左政, 杨广庆, 王贺, 许淋颖, 靳静, 梁训美. 土工格室规格对加筋土剪切性能的影响[J]. 岩土工程学报, 2022, 44(6): 1053-1060. DOI: 10.11779/CJGE202206009
ZUO Zheng, YANG Guang-qing, WANG He, XU Lin-ying, JIN Jing, LIANG Xun-mei. Effects of geocell size on shear behavior of reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1053-1060. DOI: 10.11779/CJGE202206009
Citation: ZUO Zheng, YANG Guang-qing, WANG He, XU Lin-ying, JIN Jing, LIANG Xun-mei. Effects of geocell size on shear behavior of reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1053-1060. DOI: 10.11779/CJGE202206009

土工格室规格对加筋土剪切性能的影响  English Version

基金项目: 

国家自然科学基金项目 52079078

河北省自然科学基金项目 E2018210097

河北省自然科学基金项目 E2019208159

详细信息
    作者简介:

    左政(1993—),男,博士研究生,主要从事土工合成材料性能与加筋土技术研究。E-mail: geozz@stdu.edu.cn

    通讯作者:

    杨广庆,E-mail: yanggq@stdu.edu.cn

  • 中图分类号: TU472

Effects of geocell size on shear behavior of reinforced soil

  • 摘要: 土工格室加筋结构由于抗震性好、施工简便、造价低廉,而广泛应用于公路、铁路等交通基础设施中。目前土工格室加筋结构中仅考虑了土工格室的抗拉强度,而未考虑土工格室规格的影响,使土工格室的选用主要依靠工程经验。通过对5种不同规格土工格室开展室内直剪试验,研究了条带高度、结点间距及法向应力对土工格室–砾砂剪切力学特性的影响,通过引入加筋强度系数评价了不同法向应力、土工格室规格的加筋效果,最后分析了土工格室规格对剪切强度参数的影响。试验结果表明:不同规格土工格室均可有效提高加筋结构的抗剪强度,其中抗剪强度随条带高度的增大、结点间距的减小而增大,同时条带高度对剪切强度的贡献约是结点间距的1.8倍。土工格室加筋砾砂的抗剪强度随法向应力增大而增大,但其加筋强度系数随法向应力的增大而减小。50 kPa作用下,条带高度对加筋强度系数的增幅在12.57%以上,而结点间距对加筋强度系数的增幅却不足3.80%。土工格室加筋可显著提高填料的黏聚力,其中条带高度对黏聚力的提高尤为显著,增幅约为25%,而对内摩擦角提高相对较少,增量最大为5.11°。试验结果可为土工格室在实际工程中的应用和理论研究提供实验基础。
    Abstract: The geocell-reinforced structures (GRS) are widely adopted in transportation infrastructure such as highways and railways due to their good seismic performance, simple construction and low cost. At present, in GRS study, only the tensile strength of geocells is considered, the effects of geocell size of geometry are not considered, so the selection of geocells mainly depends on engineering experience. The effects of geocell strip height, junction spacing and normal stress on the shear mechanical characteristics of geocell-reinforced gravel sand are studied by conducting a series of laboratory direct shear tests on five types of geocells. The reinforcement effects of different normal stresses and geocell sizes are evaluated by introducing the reinforced strength coefficient. Finally, the influences of geocell size on shear strength parameters are analyzed. It is determined that the geocell with different sizes can effectively improve the shear strength of reinforced structures, and the shear strength increases with the increase of strip height and the decrease of junction spacing. Meanwhile, the contribution of the strip height to the shear strength is about 1.8 times that of the junction spacing. The shear strength of geocell reinforced gravel sand increases with the increase of normal stress, but its reinforced strength coefficient decreases with the increase of normal stress. Under 50 kPa, the increase of strip height to the reinforced strength coefficient is more than 12.57%, while the increase of junction spacing to the reinforced strength coefficient is less than 3.80%. The geocell reinforcement can significantly improve the cohesion of infill materials, especially the strip height, with an increase of about 25%, the increase of internal friction angle is relatively small, and the maximum increment is 5.11°. The test results can provide an experimental basis for the application of geocells in practical engineering and theoretical researches.
  • 随着城市建设的快速发展和建筑技术的不断进步,城市地下空间得到大规模开发和利用,超深超大基坑工程不断涌现。近年来,基坑开挖面积在10×104 m2以上,开挖深度达40 m以上的工程项目越来越多。例如,上海地铁4号线修复工程深基坑开挖深度接近41 m,上海世博地下变电站基坑开挖深度接近34 m,天津的高层建筑基坑最大平面尺寸已达548 m×187 m。同时,基坑工程中也出现了一些亟待解决的问题,坑底土体回弹问题就是其中之一[1-4]。基坑开挖产生坑底回弹,同时周边围护结构变形,也会要造成基底的隆起,回弹再压缩变形往往是建(构)筑物沉降变形的主要组成部分。

    已有学者对基坑回弹变形的特点及其对坑内桩基承载力的影响进行了研究。Iwasaki等[5]最早认为坑底土体竖向回弹会影响坑底桩基,认为土体回弹会对桩产生向上的侧摩阻力从而导致桩身上拔。对于基坑开挖与桩基的相互作用,Finno等[6]利用平面有限元对一基坑开挖引起临近桩基破坏的实例进行了分析。刘畅等[7]采用有限元数值模拟分析结合现场实测数据,研究了采用逆作法施工的基坑回弹变形问题,分析了工程桩、支护结构、楼板对坑底回弹变形的影响。查甫生等[8]通过有限元软件ABAQUS,以坑底无桩和坑底群桩两种基坑为研究对象,对比分析了有桩、无桩情况下,深基坑开挖卸载的变形特性,得出了工程桩可以使基坑周围沉降、基坑中心隆起、围护结构向坑内位移这几种变形明显减小。曹力桥[9]利用ABAQUS软件分析了存在工程桩和不存在工程桩基坑开挖和降水下的三维模型,通过对比分析了基坑开挖降水过程中基坑隆起的基本规律,得出工程降水对深基坑土体的压密作用及工程桩对坑底变形有明显的抑制作用。冯虎等[10]利用FLAC数值模拟软件研究了坑内工程桩对软土超深基坑抗隆起稳定的影响规律以及作用机理,结果表明,墙趾土层特性、地连墙插入深度、基坑宽度和潜在滑裂面之内的工程桩对基坑抗隆起稳定有着非常显著的影响。

    本文结合江苏某隧道明挖基坑工程,利用PLAXIS 3D软件,采用小应变土体硬化(HSS)模型作为土层的本构模型,建立了太湖隧道第二仓基坑的1/4模型,应用该模型,分析研究了坑底工程桩的桩长、桩径、桩刚度对基坑回弹变形的影响规律。

    江苏某湖底隧道工程,公路等级为双向六车道(全线紧急停车带)高速公路,设计速度100 km/h,隧道总长10709 m,净宽16.75 m,湖中最大开挖深度达15 m,建成断面示意图见图1

    图  1  隧道断面示意图
    Figure  1.  Schematic diagram of tunnel section

    本文研究的基坑地层分布较均匀,项目隧道工程场地主要为粉土及粉质黏土,局部夹软土层,设计采用明挖施工,主要采用放坡加垂直支护形式进行开挖,基坑工程规模大、施工时间长、施工工序和工艺流程复杂等特点,研究基坑开挖卸荷引起的坑底回弹变形是该项目长期变形控制的关键技术问题之一。

    现场监测由施工方进行,由于在施工过程中隆起测点遭到施工破坏,所以图2只给出了第二仓基坑孔隙水压力、立柱隆沉、桩土深层水平位移、围护结构水平位移及支撑轴力的测点图。

    图  2  第二仓基坑测点布置图
    Figure  2.  Survey point layout of the second warehouse foundation pit

    数值模拟标段选用第二仓K25+135—K25+515标段,基坑尺寸为400 m×80 m,开挖深度为15 m,为了便于数值计算,选取1/4的基坑进行建模,基坑三维模型及网格划分如图3所示。

    图  3  基坑三维模型及网格划分示意图
    Figure  3.  Three-dimensional model and grid drawing of foundation pit

    土层分层情况已进行适当简化,已在断面图4中标明。自上而下分别为:2-1粉质黏土,2-3粉土,2-4淤泥质粉质黏土,3-1粉质黏土,3-2粉质黏土,4-1b粉质黏土,4-1黏土,层底标高-90 m。

    图  4  基坑断面示意图
    Figure  4.  Schematic diagram of excavation section

    基坑开挖一般属于临时性工程,工期较短,所以按不排水条件进行分析,且不考虑开挖过程对土体扰动的影响;土体本构模型采用小应变硬化模型。通过标准固结试验获得土体参考切线模量Eoedref,通过三轴固结排水剪切试验获得土体参考割线模量E50ref、破坏比Rf和土体强度参数c′,φ′值,通过三轴固结排水加卸载剪切试验获得参考加卸载模量Eurref,具体试验过程与试验数据处理不再赘述。HSS模型参数取值见表1

    表  1  土层小应变本构模型参数取值表
    Table  1.  Parameter value table of soil layer HSS model
    土层Eoedref/MPaE50ref/MPaEurref/MPaG0ref/MPaγ0.7/10-4Rfc/kPaφ/(°)
    2-15.0673.2441.32112.02.00.705.037.5
    2-38.5924.0326.93100.02.00.624.732.2
    2-42.1907.3229.1158.12.00.907.229.0
    4-12.5667.0632.87115.82.00.8616.538.0
    下载: 导出CSV 
    | 显示表格

    基坑采用上部放坡与钻孔灌注桩结合的围护结构形式,如图4所示,围护结构及支撑均按弹性材料考虑,三维模型见图5

    图  5  支护体系模拟示意图
    Figure  5.  Schematic diagram of support system simulation

    (1)采用两道内支撑,第1道为钢筋混凝土支撑,间距为8 m,截面为800 mm×1000 mm,刚度为3×107 kPa,重度为25 kN/m3;第2道支撑为钢管支撑,间距为4 m,截面直径为609 mm,厚度为16 mm,刚度为2.1×108 kPa,重度为78.5 kN/m3

    (2)止水帷幕及连续墙采用板单元进行模拟,本文在计算时将连续墙的刚度按C30混凝土模量的80%取值,即为2.4×107 kPa,泊松比取为0.2。

    (3)被动加固区截面尺寸为5 m×5m,沿着基坑纵向满长布置,材料为水泥土,莫尔-库仑模型,刚度为1.5×105 kPa,泊松比为0.25,抗剪强度为750 kPa。

    (4)工程桩直径为600 mm,桩长为15 m,桩间距为8 m,桩的刚度为3×107 kPa,桩的重度为7 kN/m3

    对称侧面约束法向自由度及垂直于另外两个方向的转动自由度,非对称侧面仅约束法向自由度,底面约束所有自由度。

    数值模拟开挖方案采取在模型竖直方向上开挖一层土,施工一道撑的做法,工况描述见表2

    表  2  计算工况
    Table  2.  Calculation conditions
    施工阶段工况描述
    初始阶段平衡初始地应力
    1施工围护结构与工程桩
    2放坡开挖至-4 m,降水至-4 m
    3开挖至-5 m,降水至-5 m
    4施工第一道内支撑
    5开挖至-10 m,降水至-10 m
    6施工第二道内支撑
    7开挖至-15 m,降水至-16 m
    下载: 导出CSV 
    | 显示表格

    为保证有限元数值模拟计算结果的准确可靠,提取了基坑的砼支撑轴力监测数据与基坑围护墙水平位移数据,与PLAXIS模拟结果进行对比,结果见图6。可以看出钢支撑轴力模拟值的变化趋势与实测值的变化趋势一致,开挖至坑底时的误差为7.5%,可以看出钢支撑轴力曲线吻合度较高。

    图  6  钢支撑轴力对比图
    Figure  6.  Axial force contrast diagram of steel bracing

    研究工程桩桩长对基坑回弹变形的影响,保持工程桩桩径(d=0.6 m)、刚度(E=3×107 kPa)不变,分别取工程桩桩长为5,10,15,20,25 m以及无工程桩共6种条件。

    图7看出,无桩的回弹变形曲线与有桩的回弹变形曲线存在明显区别。无桩的回弹变形曲线呈现较为平滑的“凸”形,最大回弹变形量为33 mm,当桩即不施工工程桩时,基坑回弹增长较快,当距坑边约10 m,基坑回弹量不再增长,保持在约33 mm左右。

    图  7  桩长-回弹曲线图
    Figure  7.  Pile length - rebound curves

    当工程桩存在时,有桩的回弹变形曲线呈现波浪型,波谷处即为打桩的位置,此时,基坑回弹量增长较慢,在距坑边7 m左右就不再增长,最大值为27 mm左右;并且施工工程桩的位置,基坑回弹出现显著的减小。桩长每增加5 m,基坑中心回弹量减小约8%。

    研究工程桩桩径对基坑回弹变形的影响,保持工程桩桩长(L=25 m)、刚度(E=3×107 kPa)不变,分别取工程桩桩径为d=0.6 m,L=0.8 m,d=1.0 m,d=1.2 m,d=1.4 m以及无工程桩共6种条件。

    图8可以看出,各个桩径工况下,随着桩径的增加,基坑回弹变形量逐渐减小,工程桩桩径每增加0.2 m,基坑中心的回弹量减小4%。

    图  8  桩径-回弹曲线图
    Figure  8.  Pile diameter - rebound curve

    研究工程桩刚度对基坑回弹变形的影响,保持工程桩桩长(L=25 m)、桩径(d=0.6 m)不变,分别取工程桩刚度为E=2.5×107 kPa,E=3.0×107 kPa,E=3.5×107 kPa,E=3.8×107 kPa以及无工程桩5种工况。

    图9可以看出,改变工程桩桩刚度后,基坑回弹变形并未产生明显变化,结果表明,坑底工程桩的桩刚度对基坑回弹变形的影响最小。

    图  9  桩刚度-回弹曲线
    Figure  9.  Pile stiffness-rebound curves

    (1)基坑开挖初期,开挖深度较浅,基坑回弹变形为弹性变形,呈现四周小中间大的特点;随着开挖深度的增加,侧向卸荷逐渐增大,基坑内部土体产生塑性变形,基坑回弹变形呈现四周小中间大的特点。

    (2)由基坑回弹变形曲线可以看出,工程桩附近土体回弹量明显小于相邻土体,最终开挖完成时,有桩较无桩可以减小约20%的回弹变形。

    (3)结合基坑回弹变形曲线可以看出,桩长每增加5 m,基坑回弹变形减小约5%左右;桩径每增加0.2 m,基坑回弹变形减小约2%左右;工程桩桩身刚度的变化对基坑回弹变形的影响不是特别明显。

  • 图  1   土工格室示意图[1]

    Figure  1.   Schematic diagram of geocell reinforcement[1]

    图  2   直剪试验设备及原理示意图

    Figure  2.   Direct shear test apparatus and schematic diagram of principle

    图  3   颗粒级配曲线

    Figure  3.   Grain-size distribution curves of particles

    图  4   击实试验曲线

    Figure  4.   Curve of compaction tests

    图  5   土工格室加筋砾砂直剪试验示意图

    Figure  5.   Schematic representation of direct shear tests on geocell-reinforced gravel sand

    图  6   回填后呈圆形开口的土工格室

    Figure  6.   Geocell pocket shape of circle after backfilling

    图  7   上、下试验箱的剪切阻力与剪切位移关系曲线

    Figure  7.   Plot of shear resistance versus shear displacement between upper and lower test boxes

    图  8   不同规格土工格室加筋砾砂与砾砂的直剪试验曲线

    Figure  8.   Plot of direct shear tests on gravel sand and gravel sand reinforced by geocells with different sizes

    图  9   直剪过程中土工格室发挥的加筋作用

    Figure  9.   Reinforcement effects of geocell in direct shear tests

    图  10   4种法向应力下G(100–440)加筋砾砂的剪切试验曲线

    Figure  10.   Plot of shear tests on geocell (100–440)-reinforced gravel sand under four normal stresses

    图  11   直剪试验后土工格室开口和条带形状

    Figure  11.   Pocket and strip shape of geocell after direct shear tests

    图  12   不同规格土工格室的加筋强度系数

    Figure  12.   Reinforced strength coefficient of geocells with different sizes

    图  13   直剪试验结果线性拟合

    Figure  13.   Linear fitting of direct shear test results

    图  14   土工格室规格与抗剪强度指标关系

    Figure  14.   Relationship between geocell sizes and shear strength indexes

    表  1   试验用土工格室技术参数

    Table  1   Technical parameters of geocells used in tests

    条带材质 条带高度H/mm 结点距离S/mm 简化表示方法/mm
    HDPE 100 180 G(100–180)
    100 260 G(100–260)
    100 440 G(100–440)
    150 440 G(150–440)
    200 440 G(200–440)
    下载: 导出CSV

    表  2   本研究用试验方案

    Table  2   Experimental programs used in this study

    试验名称 试验速率/(mm·min-1) 土工格室规格/mm 法向应力/kPa
    摩擦阻力 1.0
    直接剪切 G(100–180) 50,100,150,200
    G(100–260)
    G(100–440)
    G(150–440)
    G(200–440)
    下载: 导出CSV

    表  3   砾砂与不同规格土工格室加筋砾砂抗剪强度参数对比

    Table  3   Comparison of shear strength indexes of gravel sand and gravel sand reinforced by geocells with different sizes

    测试材料 (似)黏聚力/kPa (似)黏聚力增量/kPa (似)摩擦角/(°) (似)摩擦角增量/(°)
    砾砂 3.10 30.0
    G(100–440) 19.36 16.26 30.47 0.47
    G(100–260) 19.75 16.65 32.31 2.31
    G(100–180) 20.96 17.86 33.28 3.28
    G(150–440) 23.30 20.20 33.66 3.66
    G(200–440) 28.67 25.57 35.11 5.11
    下载: 导出CSV
  • [1] 杨广庆, 左政, 刘英, 等. 土工格室条带拉伸力学特性试验研究[J]. 岩土工程学报, 2021, 43(4): 760–767. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104023.htm

    YANG Guang-qing, ZUO Zheng, LIU Ying, et al. Experimental investigations on tensile mechanical properties of geocell strips[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 760–767. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104023.htm

    [2] 曹文昭, 郑俊杰, 严勇. 桩承式变刚度加筋垫层复合地基数值模拟[J]. 岩土工程学报, 2017, 39(增刊2): 83–86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2022.htm

    CAO Wen-zhao, ZHENG Jun-jie, YAN Yong. Numerical simulation of composite foundation using pile-supported and geosynthetics-reinforced cushion with variable stiffness[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 83–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2022.htm

    [3] 晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17–24. doi: 10.3969/j.issn.1001-7372.2017.10.003

    YAN Chang-gen, GU Liang-jun, YANG Xiao-hua, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17–24. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.10.003

    [4]

    GARCIA R S, AVESANI NETO J O. Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers[J]. Geotextiles and Geomembranes, 2021, 49(1): 146–158. doi: 10.1016/j.geotexmem.2020.09.009

    [5] 李丽华, 崔飞龙, 肖衡林, 等. 轮胎与格室加筋路堤性能及承载力研究[J]. 岩土工程学报, 2017, 39(1): 81–88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701008.htm

    LI Li-hua, CUI Fei-long, XIAO Heng-lin, et al. Performance and bearing capacity of embankments reinforced with waste tires and geocells[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 81–88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701008.htm

    [6]

    HEGDE A. Geocell reinforced foundation beds-past findings, present trends and future prospects: a state-of-the-art review[J]. Construction and Building Materials, 2017, 154: 658–674. doi: 10.1016/j.conbuildmat.2017.07.230

    [7]

    LIU Y, DENG A, JAKSA M. Failure mechanisms of geocell walls and junctions[J]. Geotextiles and Geomembranes, 2019, 47(2): 104–120. doi: 10.1016/j.geotexmem.2018.11.003

    [8] 左政, 杨广庆, 刘英, 等. 土工格室不同结点连接方式失效机制试验研究[J]. 岩土工程学报, 2021, 43(9): 1682–1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109018.htm

    ZUO Zheng, YANG Guang-qing, LIU Ying, et al. Experimental investigations on failure mechanism of different junction connections of geocells[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1682–1690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109018.htm

    [9]

    SONG F, LIU H B, MA L Q, et al. Numerical analysis of geocell-reinforced retaining wall failure modes[J]. Geotextiles and Geomembranes, 2018, 46(3): 284–296. doi: 10.1016/j.geotexmem.2018.01.004

    [10]

    KHORSANDIARDEBILI N, GHAZAVI M. Static stability analysis of geocell-reinforced slopes[J]. Geotextiles and Geomembranes, 2021, 49(3): 852–863. doi: 10.1016/j.geotexmem.2020.12.012

    [11] 赵明华, 陈大兴, 刘猛, 等. 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42(4): 601–609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm

    ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601–609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm

    [12]

    BANERJEE L, CHAWLA S, KUMAR DASH S. Application of geocell reinforced coal mine overburden waste as subballast in railway tracks on weak subgrade[J]. Construction and Building Materials, 2020, 265: 120774. doi: 10.1016/j.conbuildmat.2020.120774

    [13] 成浩, 王晅, 张家生, 等. 加筋粗粒土筋土界面剪切特性与统计损伤软化模型研究[J]. 铁道科学与工程学报, 2018, 15(11): 2780–2787. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811008.htm

    CHENG Hao, WANG Xuan, ZHANG Jia-sheng, et al. Shear behavior of geogrid-soil interface and its statistical damage softening model[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2780–2787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811008.htm

    [14] 易富, 杜常博, 王政宇, 等. 网孔尺寸对格栅–尾矿界面特性的影响[J]. 煤炭学报, 2020, 45(5): 1795–1802. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005025.htm

    YI Fu, DU Chang-bo, WANG Zheng-yu, et al. Effects of mesh size on interface characteristics between geogrid and tailings[J]. Journal of China Coal Society, 2020, 45(5): 1795–1802. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005025.htm

    [15]

    LIU F Y, YING M J, YUAN G H, et al. Particle shape effects on the cyclic shear behaviour of the soil-geogrid interface[J]. Geotextiles and Geomembranes, 2021, 49(4): 991–1003. doi: 10.1016/j.geotexmem.2021.01.008

    [16]

    TAVAKOLI M G, MOTARJEMI F. Interfacial properties of geocell-reinforced granular soils[J]. Geotextiles and Geomembranes, 2018, 46(4): 384–395. doi: 10.1016/j.geotexmem.2018.03.002

    [17] 李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版), 2019, 52(4): 311–316. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201904005.htm

    LI Li-hua, WEN Bei, HU Zhi, et al. Study on reinforced shear behavior of construction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University, 2019, 52(4): 311–316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201904005.htm

    [18] 刘炜, 汪益敏, 陈页开, 等. 土工格室加筋土的大尺寸直剪试验研究[J]. 岩土力学, 2008, 29(11): 3133–3138, 3160. doi: 10.3969/j.issn.1000-7598.2008.11.044

    LIU Wei, WANG Yi-min, CHEN Ye-kai, et al. Research on large size direct shear test for geocell reinforced soil[J]. Rock and Soil Mechanics, 2008, 29(11): 3133–3138, 3160. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.11.044

    [19] 陈静, 高睿, 刘洋泽鹏, 等. 不同脏污质对格栅加筋道砟性能的影响[J]. 西南交通大学学报, 2021.

    CHEN Jing, GAO Rui, LIU Yang-ze-peng, et al. Influence of Various Fouling Materials on Geogrid-reinforced Ballast[J]. Journal of Southwest Jiaotong University, 2021, 57(1): 200–206. (in Chinese)

    [20] 刘飞禹, 朱晨, 王军. 剪切速率和法向加载频率对筋土界面剪切特性的影响[J]. 岩土工程学报, 2021, 43(5): 832–840. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105009.htm

    LIU Fei-yu, ZHU Chen, WANG Jun. Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 832–840. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105009.htm

    [21]

    HEGDE A, SITHARAM T G. Joint strength and wall deformation characteristics of a single-cell geocell subjected to uniaxial compression[J]. International Journal of Geomechanics, 2015, 15(5): 04014080. doi: 10.1061/(ASCE)GM.1943-5622.0000433

  • 期刊类型引用(0)

    其他类型引用(4)

图(14)  /  表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  21
  • PDF下载量:  149
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-06-21
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

/

返回文章
返回